login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322746 a(n) = 1/2 * (-1 + Sum_{k=0..n} binomial(2*n,2*k)*(n+1)^(n-k)*n^k). 4
0, 1, 24, 675, 25920, 1275125, 76545000, 5425069447, 443365544448, 41047124680809, 4245890890571000, 485307363135371051, 60742714406414040000, 8262695239025750162653, 1213734518568509516047560, 191478489107270936785743375, 32288451913272713227175006208 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..321

Wikipedia, Chebyshev polynomials.

Index entries for sequences related to Chebyshev polynomials.

FORMULA

sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(n+1) + sqrt(n))^n.

sqrt(a(n)+1) - sqrt(a(n)) = (sqrt(n+1) - sqrt(n))^n.

a(n) = (A173174(n) - 1)/2.

a(n) ~ exp(1/2) * 2^(2*n - 2) * n^n. - Vaclav Kotesovec, Dec 25 2018

EXAMPLE

(sqrt(3) + sqrt(2))^2 = 5 + 2*sqrt(6) = sqrt(25) + sqrt(24). So a(2) = 24.

PROG

(PARI) {a(n) = 1/2*(-1+sum(k=0, n, binomial(2*n, 2*k)*(n+1)^(n-k)*n^k))}

(PARI) {a(n) = (polchebyshev(n, 1, 2*n+1)-1)/2}

CROSSREFS

Main diagonal of A322699.

Cf. A322747.

Sequence in context: A268473 A291066 A160038 * A184274 A093456 A189412

Adjacent sequences:  A322743 A322744 A322745 * A322747 A322748 A322749

KEYWORD

nonn

AUTHOR

Seiichi Manyama, Dec 25 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 21:32 EDT 2020. Contains 333117 sequences. (Running on oeis4.)