The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322744 Array T(n,k) = (3*n*k - A319929(n,k))/2, n >= 1, k >= 1, read by antidiagonals. 6

%I

%S 1,2,2,3,6,3,4,8,8,4,5,12,11,12,5,6,14,16,16,14,6,7,18,19,24,19,18,7,

%T 8,20,24,28,28,24,20,8,9,24,27,36,33,36,27,24,9,10,26,32,40,42,42,40,

%U 32,26,10,11,30,35,48,47,54,47,48,35,30,11,12,32,40,52,56,60,60,56,52,40,32,12

%N Array T(n,k) = (3*n*k - A319929(n,k))/2, n >= 1, k >= 1, read by antidiagonals.

%C Associative multiplication-like table whose values depend on whether n and k are odd or even.

%C Associativity is proved by checking the formula with eight cases of three odd and even arguments. T(n,k) is distributive as long as partitioning an even number into two odd numbers is not allowed.

%H David Lovler, <a href="/A322744/b322744.txt">Table of n, a(n) for n = 1..861</a> (Antidiagonals n = 1..41, flattened)

%F T(n,k) = (3*n*k - (n + k - 1))/2, if n is odd and k is odd;

%F T(n,k) = (3*n*k - n)/2, if n is even and k is odd;

%F T(n,k) = (3*n*k - k)/2, if n is odd and k is even;

%F T(n,k) = 3*n*k/2, if n is even and k is even.

%F T(n,k) = (3*n*k - A319929(n,k))/2.

%F T(n,k) = 6*floor(n/2)*floor(k/2) + A319929(n,k).

%e Array T(n,k) begins:

%e 1 2 3 4 5 6 7 8 9 10 ...

%e 2 6 8 12 14 18 20 24 26 30 ...

%e 3 8 11 16 19 24 27 32 35 40 ...

%e 4 12 16 24 28 36 40 48 52 60 ...

%e 5 14 19 28 33 42 47 56 61 70 ...

%e 6 18 24 36 42 54 60 72 78 90 ...

%e 7 20 27 40 47 60 67 80 87 100 ...

%e 8 24 32 48 56 72 80 96 104 120 ...

%e 9 26 35 52 61 78 87 104 113 130 ...

%e 10 30 40 60 70 90 100 120 130 150 ...

%e ...

%t Table[Function[n, (3 n k - If[OddQ@ n, If[OddQ@ k, n + k - 1, k], If[OddQ@ k, n, 0]])/2][m - k + 1], {m, 12}, {k, m}] // Flatten (* _Michael De Vlieger_, Apr 21 2019 *)

%o (PARI) T319929(n, k) = if (n%2, if (k%2, n+k-1, k), if (k%2, n, 0));

%o T(n,k) = (3*n*k - T319929(n,k))/2;

%o matrix(6, 6, n, k, T(n, k)) \\ _Michel Marcus_, Dec 27 2018

%Y Equals A003991 + A322630 - A319929.

%Y Cf. A327263.

%K nonn,tabl,easy

%O 1,2

%A _David Lovler_, Dec 24 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 9 03:41 EDT 2020. Contains 335538 sequences. (Running on oeis4.)