login
A322668
Numbers k such that (k, k+2) are not twin primes yet sigma(k+2)/d(k+2) - sigma(k)/d(k) = 1.
2
1, 350, 6497, 12317, 133787, 181427, 404471, 439097, 485237, 501182, 549378, 1410119, 2696807, 6220607, 6827369, 6954767, 9770027, 10302419, 10449347, 10887977, 11014007, 16745387, 18959111, 25883519, 27334469, 39508037, 40311149, 40551617, 42561437, 44592209
OFFSET
1,2
COMMENTS
A variation of A050507 with average of the divisors instead of their sum.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..241 (terms below 10^10)
MATHEMATICA
f[n_] := DivisorSigma[1, n]/DivisorSigma[0, n]; aQ[n_] := f[n + 2] - f[n] == 1 && !(PrimeQ[n] && PrimeQ[n + 2]); Select[Range[1000000], aQ]
PROG
(PARI) isok(k) = !(isprime(k) && isprime(k+2)) && (sigma(k+2)/numdiv(k+2) - sigma(k)/numdiv(k) == 1); \\ Michel Marcus, Jan 22 2019
CROSSREFS
Cf. A000005 (number of divisors), A000203 (sum of divisors).
Sequence in context: A349952 A108776 A184609 * A295708 A232786 A084875
KEYWORD
nonn
AUTHOR
Amiram Eldar, Jan 11 2019
STATUS
approved