This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322658 Integers whose set of proper divisors, excluding 1, can be partitioned into two nonempty subsets having equal sum. 2
 36, 72, 105, 144, 195, 200, 255, 288, 315, 324, 345, 385, 392, 400, 450, 495, 525, 576, 585, 648, 675, 735, 784, 800, 805, 825, 855, 882, 900, 945, 975, 1035, 1152, 1155, 1295, 1296, 1305, 1323, 1365, 1395, 1425, 1449, 1463, 1485, 1547, 1568, 1575, 1600, 1645, 1665, 1755, 1764, 1785 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Called half-layered numbers in Behzadipour link. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..2000 Hussein Behzadipour, Two-layered numbers, arXiv:1812.07233 [math.NT], 2018. EXAMPLE 36 is a term with {2, 3, 4, 18} and B = {6, 9, 12} having equal sums 27. MAPLE a:= proc(n) option remember; local k, l, t, b; b:=       proc(m, i) option remember; m=0 or i>0 and         (b(m, i-1) or l[i]<=m and b(m-l[i], i-1)) end;       for k from 1+`if`(n=1, 1, a(n-1)) do         if isprime(k) then next fi;         l:= sort([(numtheory[divisors](k) minus {1, k})[]]);         t:= add(i, i=l);         if t::even then forget(b);           if b(t/2, nops(l)) then return k fi         fi       od     end: seq(a(n), n=1..60);  # Alois P. Heinz, Dec 22 2018 MATHEMATICA aQ[n_] := CompositeQ[n] && Module[{d = Rest[Most[Divisors[n]]], t, ds, x}, ds = Plus @@ d; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; Select[Range[2, 1785], aQ]  (* Amiram Eldar, Dec 22 2018 after T. D. Noe at A083207 *) PROG (PARI) part(n, v)=if(n<1, return(n==0)); forstep(i=#v, 2, -1, if(part(n-v[i], v[1..i-1]), return(1))); n==v[1]; is(n)=my(d=divisors(n), dd = select(x->((x>1) && (x

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 04:42 EDT 2019. Contains 322294 sequences. (Running on oeis4.)