login
A322621
E.g.f.: C(x,y) = cosh(x)*cosh(y) / (1 - sinh(x)*sinh(y)), where C(x,y) = Sum_{n>=0} Sum_{k=0..2*n} T(n,k) * x^(2*n-k)*y^k/(2*n)!, as a triangle of coefficients T(n,k) read by rows.
5
1, 1, 2, 1, 1, 16, 30, 16, 1, 1, 96, 615, 1040, 615, 96, 1, 1, 512, 10220, 43904, 68390, 43904, 10220, 512, 1, 1, 2560, 147645, 1482240, 4998210, 7322112, 4998210, 1482240, 147645, 2560, 1, 1, 12288, 1948650, 43310080, 291662415, 831080448, 1161583500, 831080448, 291662415, 43310080, 1948650, 12288, 1, 1, 57344, 24180611, 1145417728, 14692638961, 75654971392, 190145878923, 256124504064, 190145878923, 75654971392, 14692638961, 1145417728, 24180611, 57344, 1
OFFSET
0,3
COMMENTS
See A322193 for another description of the e.g.f. of this sequence.
FORMULA
E.g.f.: C(x,y) and related series S(x,y) satisfy the following identities.
(1) C(x,y)^2 - S(x,y)^2 = 1.
(2a) C(x,y) = cosh(x) * cosh(y) / (1 - sinh(x)*sinh(y)).
(2b) S(x,y) = (sinh(x) + sinh(y)) / (1 - sinh(x)*sinh(y)).
(3a) cosh(x) = C(x,y) * cosh(y) / (1 + sinh(y)*S(x,y)).
(3b) sinh(x) = (S(x,y) - sinh(y)) / (1 + sinh(y)*S(x,y)).
(3c) cosh(y) = C(x,y) * cosh(x) / (1 + sinh(x)*S(x,y)).
(3d) sinh(y) = (S(x,y) - sinh(x)) / (1 + sinh(x)*S(x,y)).
(4a) exp(x) = (C(x,y)*cosh(y) + S(x,y) - sinh(y)) / (1 + sinh(y)*S(x,y)).
(4b) exp(y) = (C(x,y)*cosh(x) + S(x,y) - sinh(x)) / (1 + sinh(x)*S(x,y)).
(5a) exp(x) = (C(x,y) + S(x,y)*cosh(y)) * (cosh(y) - sinh(y)*C(x,y)) / (1 - sinh(y)^2*S(x,y)^2).
(5b) exp(y) = (C(x,y) + S(x,y)*cosh(x)) * (cosh(x) - sinh(x)*C(x,y)) / (1 - sinh(x)^2*S(x,y)^2).
(5c) C(x,y) + S(x,y) = (cosh(x) + sinh(x)*cosh(y)) * (cosh(y) + sinh(y)*cosh(x)) / (1 - sinh(x)^2*sinh(y)^2).
(6a) exp(x) = (C(x,y) + S(x,y)*cosh(y)) / (cosh(y) + sinh(y)*C(x,y)).
(6b) exp(y) = (C(x,y) + S(x,y)*cosh(x)) / (cosh(x) + sinh(x)*C(x,y)).
(6c) C(x,y) + S(x,y) = (cosh(x) + sinh(x)*cosh(y)) / (cosh(y) - sinh(y)*cosh(x)).
(6d) C(x,y) + S(x,y) = (cosh(y) + sinh(y)*cosh(x)) / (cosh(x) - sinh(x)*cosh(y)).
SPECIAL ARGUMENTS.
C(x, y=0) = cosh(x).
C(x, y=x) = cosh(x)^2 / (1 - sinh(x)^2).
C(x, y=-x) = 1.
EXAMPLE
E.g.f.: C(x,y) = 1 + (1*x^2 + 2*x*y + 1*y^2)/2! + (1*x^4 + 16*x^3*y + 30*x^2*y^2 + 16*x*y^3 + 1*y^4)/4! + (1*x^6 + 96*x^5*y + 615*x^4*y^2 + 1040*x^3*y^3 + 615*x^2*y^4 + 96*x*y^5 + 1*y^6)/6! + (1*x^8 + 512*x^7*y + 10220*x^6*y^2 + 43904*x^5*y^3 + 68390*x^4*y^4 + 43904*x^3*y^5 + 10220*x^2*y^6 + 512*x*y^7 + 1*y^8)/8! + ...
where C(x,y) = cosh(x)*cosh(y) / (1 - sinh(x)*sinh(y)).
This irregular triangle of coefficients of x^(2*n-k)*y^k/(2*n)! in C(x,y) begins
1;
1, 2, 1;
1, 16, 30, 16, 1;
1, 96, 615, 1040, 615, 96, 1;
1, 512, 10220, 43904, 68390, 43904, 10220, 512, 1;
1, 2560, 147645, 1482240, 4998210, 7322112, 4998210, 1482240, 147645, 2560, 1;
1, 12288, 1948650, 43310080, 291662415, 831080448, 1161583500, 831080448, 291662415, 43310080, 1948650, 12288, 1;
1, 57344, 24180611, 1145417728, 14692638961, 75654971392, 190145878923, 256124504064, 190145878923, 75654971392, 14692638961, 1145417728, 24180611, 57344, 1; ...
RELATED SERIES.
The series S(x,y), such that C(x,y)^2 - S(x,y)^2 = 1, begins
S(x,y) = (1*x + 1*y) + (1*x^3 + 6*x^2*y + 6*x*y^2 + 1*y^3)/3! + (1*x^5 + 40*x^4*y + 140*x^3*y^2 + 140*x^2*y^3 + 40*x*y^4 + 1*y^5)/5! + (1*x^7 + 224*x^6*y + 2562*x^5*y^2 + 7000*x^4*y^3 + 7000*x^3*y^4 + 2562*x^2*y^5 + 224*x*y^6 + 1*y^7)/7! + ...
The e.g.f. may be written with coefficients of x^(2*n-k)*y^k/((2*n-k)!*k!), as follows:
C(x,y) = 1 + (1*x^2/2! + 1*x*y + 1*y^2/2!) + (1*x^4/4! + 4*x^3*y/3! + 5*x^2*y^2/(2!*2!) + 4*x*y^3/3! + 1*y^4/4!) + (1*x^6/6! + 16*x^5*y/5! + 41*x^4*y^2/(4!*2!) + 52*x^3*y^3/(3!*3!) + 41*x^2*y^4/(2!*4!) + 16*x*y^5/5! + 1*y^6/6!) + (1*x^8/8! + 64*x^7*y/7! + 365*x^6*y^2/(6!*2!) + 784*x^5*y^3/(5!*3!) + 977*x^4*y^4/(4!*4!) + 784*x^3*y^5/(3!*5!) + 365*x^2*y^6/(2!*6!) + 64*x*y^7/7! + 1*y^8/8!) + ...
these coefficients are described by triangle A322193.
PROG
(PARI) {T(n, k) = my(X=x+x*O(x^(2*n-k)), Y=y+y*O(y^k));
C = cosh(X)*cosh(Y)/(1 - sinh(X)*sinh(Y));
(2*n)!*polcoeff(polcoeff(C, 2*n-k, x), k, y)}
/* Print as a triangle */
for(n=0, 10, for(k=0, 2*n, print1( T(n, k), ", ")); print(""))
CROSSREFS
Cf. A322620 (C + S), A322622 (S), A322624 (main diagonal), A322193.
Sequence in context: A303935 A156697 A173504 * A309036 A294756 A174918
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Dec 20 2018
STATUS
approved