OFFSET
1,4
COMMENTS
Gamma is the Euler-Mascheroni constant (A001620).
LINKS
Eric Weisstein's World of Mathematics, Harmonic Expansion
FORMULA
Sum_{n>=1} a(n)/n! = exp(gamma) = A073004.
EXAMPLE
exp(gamma) = 1 + 1/2! + 1/3! + 2/4! + 3/5! + 4/6! + 2/7! + 4/8! + ...
MAPLE
Digits:=200: a:=n->`if`(n=1, floor(exp(gamma)), floor(factorial(n)*exp(gamma))-n*floor(factorial(n-1)*exp(gamma))): seq(a(n), n=1..100); # Muniru A Asiru, Dec 20 2018
MATHEMATICA
With[{b = Exp[EulerGamma]}, Table[If[n==1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]]
PROG
(PARI) default(realprecision, 250); b = exp(Euler); for(n=1, 80, print1( if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Tristan Cam, Dec 20 2018
STATUS
approved