login
A322604
Factorial expansion of exp(gamma) = Sum_{n>=1} a(n)/n! with a(n) as large as possible.
0
1, 1, 1, 2, 3, 4, 2, 4, 7, 5, 6, 5, 12, 1, 12, 9, 0, 7, 4, 14, 10, 17, 2, 14, 23, 4, 2, 2, 16, 2, 10, 18, 23, 26, 26, 26, 24, 1, 17, 26, 18, 12, 0, 15, 42, 34, 39, 33, 20, 18, 40, 43, 12, 47, 51, 10, 50, 35, 14, 23, 16, 1, 55, 41, 34, 29, 14, 41, 35, 60, 53, 45, 61, 35, 49, 73, 13, 13, 57, 59
OFFSET
1,4
COMMENTS
Gamma is the Euler-Mascheroni constant (A001620).
FORMULA
Sum_{n>=1} a(n)/n! = exp(gamma) = A073004.
EXAMPLE
exp(gamma) = 1 + 1/2! + 1/3! + 2/4! + 3/5! + 4/6! + 2/7! + 4/8! + ...
MAPLE
Digits:=200: a:=n->`if`(n=1, floor(exp(gamma)), floor(factorial(n)*exp(gamma))-n*floor(factorial(n-1)*exp(gamma))): seq(a(n), n=1..100); # Muniru A Asiru, Dec 20 2018
MATHEMATICA
With[{b = Exp[EulerGamma]}, Table[If[n==1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]]
PROG
(PARI) default(realprecision, 250); b = exp(Euler); for(n=1, 80, print1( if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", "))
CROSSREFS
Cf. A073004 (decimal expansion), A094644 (continued fraction), A001620 (Euler-Mascheroni constant).
Sequence in context: A043264 A268444 A117826 * A173229 A366296 A191248
KEYWORD
nonn
AUTHOR
Tristan Cam, Dec 20 2018
STATUS
approved