login
A003226
Automorphic numbers: m^2 ends with m.
(Formerly M3752)
48
0, 1, 5, 6, 25, 76, 376, 625, 9376, 90625, 109376, 890625, 2890625, 7109376, 12890625, 87109376, 212890625, 787109376, 1787109376, 8212890625, 18212890625, 81787109376, 918212890625, 9918212890625, 40081787109376, 59918212890625, 259918212890625, 740081787109376
OFFSET
1,3
COMMENTS
Also called curious numbers.
For entries after the second, two successive terms sum up to a total having the form 10^n + 1. - Lekraj Beedassy, Apr 29 2005 [This comment is clearly wrong as stated. The sums of two consecutive terms are 1, 6, 11, 31, 101, 452, 1001, 10001, 100001, 200001, 1000001, 3781250, .... - T. D. Noe, Nov 14 2010]
If a d-digit number n is in the sequence, then so is 10^d+1-n. However, the same number can be 10^d+1-n for different n in the sequence (e.g., 10^3+1-376 = 10^4+1-9376 = 625), which spoils Beedassy's comment. - Robert Israel, Jun 19 2015
Substring of both its square and its cube not congruent to 0 (mod 10). See A029943. - Robert G. Wilson v, Jul 16 2005
a(n)^k ends with a(n) for k > 0; see also A029943. - Reinhard Zumkeller, Nov 26 2011
Apart from initial term, a subsequence of A046831. - M. F. Hasler, Dec 05 2012
This is also the sequence of numbers such that the n-th m-gonal number ends in n for any m == 0,4,8,16 (mod 20). - Robert Dawson, Jul 09 2018
Apart from 6, a subsequence of A301912. - Robert Dawson, Aug 01 2018
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 76, p. 26, Ellipses, Paris 2008.
V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179.
R. A. Fairbairn, More on automorphic numbers, J. Rec. Math., 2 (No. 3, 1969), 170-174.
Jan Gullberg, Mathematics, From the Birth of Numbers, W. W. Norton & Co., NY, page 253-254.
B. A. Naik, 'Automorphic numbers' in 'Science Today'(subsequently renamed '2001') May 1982 pp. 59, Times of India, Mumbai.
Ya. I. Perelman, Algebra can be fun, pp. 97-98.
Clifford A. Pickover, A Passion for Mathematics, John Wiley & Sons, Hoboken, 2005, p. 64.
C. P. Schut, Idempotents. Report AM-R9101, Centrum voor Wiskunde en Informatica, Amsterdam, 1991.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..1786 (terms n = 1..200 from Vincenzo Librandi)
Robert Dawson, On Some Sequences Related to Sums of Powers, J. Int. Seq., Vol. 21 (2018), Article 18.7.6.
R. A. Fairbairn, More on automorphic numbers, J. Rec. Math., 2.3 (1969), 170-174. (Annotated scanned copy)
V. deGuerre & R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1.3 (1968), 173-179
Beeler, M., Gosper, R. W. and Schroeppel, R., HAKMEM. MIT AI Memo 239, Feb 29 1972 (Item 59 provides a 40-digit member of this sequence).
W. Schneider, Automorphic Numbers
C. P. Schut, Idempotents, Report AM-R9101, Centre for Mathematics and Computer Science, Amsterdam, 1991. (Annotated scanned copy)
Eric Weisstein's World of Mathematics, Automorphic Number
Xiaolong Ron Yu, Curious Numbers, Pi Mu Epsilon Journal, Spring 1999, pp. 819-823.
FORMULA
Equals {0, 1} union A007185 union A016090.
MAPLE
V:= proc(m) option remember;
select(t -> t^2 - t mod 10^m = 0, map(s -> seq(10^(m-1)*j+s, j=0..9), V(m-1)))
end proc:
V(0):= {0, 1}:
V(1):= {5, 6}:
sort(map(op, [V(0), seq(V(i) minus V(i-1), i=1..50)])); # Robert Israel, Jun 19 2015
MATHEMATICA
f[k_] := (r = Reduce[0 < 10^k < n < 10^(k + 1) && n^2 == m*10^(k + 1) + n, {n, m}, Integers]; If[Head[r] === And, n /. ToRules[r], n /. {ToRules[r]}]); Flatten[ Join[{0, 1}, Table[f[k], {k, 0, 13}]]] (* Jean-François Alcover, Dec 01 2011 *)
Union@ Join[{1}, Array[PowerMod[5, 2^#, 10^#] &, 16, 0], Array[PowerMod[16, 5^#, 10^#] &, 16, 0]] (* Robert G. Wilson v, Jul 23 2018 *)
PROG
(Haskell)
import Data.List (isSuffixOf)
a003226 n = a003226_list !! (n-1)
a003226_list = filter (\x -> show x `isSuffixOf` show (x^2)) a008851_list
-- Reinhard Zumkeller, Jul 27 2011
(PARI) is_A003226(n)={n<2 || 10^valuation(n^2-n, 10)>n} \\ M. F. Hasler, Dec 05 2012
(PARI) A003226(n)={ n<3 & return(n-1); my(i=10, j=10, b=5, c=6, a=b); for( k=4, n, while(b<=a, b=b^2%i*=10); while(c<=a, c=(2-c)*c%j*=10); a=min(b, c)); a } \\ M. F. Hasler, Dec 06 2012
(Sage)
def automorphic(maxdigits, pow, base=10) :
morphs = [[0]]
for i in range(maxdigits):
T=[d*base^i+x for x in morphs[-1] for d in range(base)]
morphs.append([x for x in T if x^pow % base^(i+1) == x])
res = list(set(sum(morphs, []))); res.sort()
return res
# call with pow=2 for this sequence, Eric M. Schmidt, Feb 09 2014
(Magma) [n: n in [0..10^7] | Intseq(n^2)[1..#Intseq(n)] eq Intseq(n)]; // Vincenzo Librandi, Jul 03 2015
(Python)
from itertools import count, islice
from sympy.ntheory.modular import crt
def A003226_gen(): # generator of terms
a = 0
yield from (0, 1)
for n in count(0):
b = sorted((int(crt(m:=(1<<n, 5**n), (0, 1))[0]), int(crt(m, (1, 0))[0])))
if b[0] > a:
yield from b
a = b[1]
elif b[1] > a:
yield b[1]
a = b[1]
A003226_list = list(islice(A003226_gen(), 15)) # Chai Wah Wu, Jul 25 2022
KEYWORD
nonn,base,nice,easy,changed
EXTENSIONS
More terms from Michel ten Voorde, Apr 11 2001
Edited by David W. Wilson, Sep 26 2002
Incorrect statement removed from title by Robert Dawson, Jul 09 2018
STATUS
approved