The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322597 a(n) = (4*n^3 - 6*n^2 + 20*n + 3)/3. 0
 1, 7, 17, 39, 81, 151, 257, 407, 609, 871, 1201, 1607, 2097, 2679, 3361, 4151, 5057, 6087, 7249, 8551, 10001, 11607, 13377, 15319, 17441, 19751, 22257, 24967, 27889, 31031, 34401, 38007, 41857, 45959, 50321, 54951, 59857, 65047, 70529, 76311, 82401, 88807 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS For n >= 2, a(n) gives the number of function evaluations for Dooren and Ridder's degree 5 and 7 cubature rule over an n-dimensional cube, with the exception of a(3) = 45 and a(4) = 97. LINKS Ronald Cools, Encyclopaedia of Cubature Formulas Paul van Dooren and Luc de Ridder, An adaptive algorithm for numerical integration over an n-dimensional cube, Journal of Computational and Applied Mathematics, Vol. 2 (1976), 207-217. Alan C. Genz and Awais A. Malik, Remarks on algorithm 006: An adaptive algorithm for numerical integration over an N-dimensional rectangular region, Journal of Computational and Applied Mathematics, Vol. 6 (1980), 295-302. Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 4. G.f.: (1 + 3*x - 5*x^2 + 9*x^3)/((1 - x)^4). E.g.f.: (1/3)*(3 + 18*x + 6*x^2 + 4*x^3)*exp(x). MAPLE [(4*n^3-6*n^2+20*n+3)/3\$n=0..50]; # Muniru A Asiru, Jan 23 2019 MATHEMATICA Table[(4*n^3 - 6*n^2 + 20*n + 3)/3, {n, 0, 50}] PROG (Maxima) makelist((4*n^3 - 6*n^2 + 20*n + 3)/3, n, 0, 50); CROSSREFS First differences: 2*A093328. Cf. A174794, A321124, A322594, A322595. Sequence in context: A213789 A058273 A058274 * A193214 A184862 A194772 Adjacent sequences:  A322594 A322595 A322596 * A322598 A322599 A322600 KEYWORD nonn,easy AUTHOR Franck Maminirina Ramaharo, Jan 23 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 03:13 EDT 2022. Contains 353886 sequences. (Running on oeis4.)