OFFSET
0,2
COMMENTS
a(n) is the number of evaluation points on the n-dimensional cube in Lyness's degree 7 cubature rule.
REFERENCES
Arthur H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall, 1971.
LINKS
Ronald Cools, Encyclopaedia of Cubature Formulas
Ronald Cools and Philip Rabinowitz, Monomial cubature rules since "Stroud": a compilation, Journal of Computational and Applied Mathematics Vol. 48 (1993), 309-326.
James Lu and David L. Darmofal, Higher-dimensional integration with gaussian weight for applications in probabilistic design, SIAM J. Sci. Comput. Vol. 26 (2004), 613-624.
James N. Lyness, Symmetric integration rules for hypercubes II. Rule projection and rule extension, Math. Comp. Vol. 19 (1965), 394-407.
James N. Lyness, Integration rules of hypercubic symmetry over a certain spherically symmetric space, Math. Comp. Vol. 19 (1965), 471-476.
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 5.
a(n) = a(n-1) + 4*A028387(n-1), n >= 1.
a(n) = 8*binomial(n, 3) + 16*binomial(n, 2) + 4*binomial(n, 1) + 1.
G.f.: (1 + x + 11*x^2 - 5*x^3)/(1 - x)^4
E.g.f.: (1/3)*(3 + 12*x + 24*x^2 + 4*x^3)*exp(x).
MATHEMATICA
Table[(4*n^3 + 12*n^2 - 4*n + 3)/3, {n, 0, 50}]
PROG
(Maxima) makelist((4*n^3 + 12*n^2 - 4*n + 3)/3, n, 0, 50);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Franck Maminirina Ramaharo, Dec 18 2018
STATUS
approved