login
A322570
Positive integers k such that A270710(k) (= (k+1)*(3*k-1)) have only 1 or 2 different digits in base 10.
3
1, 2, 3, 4, 5, 6, 12, 16, 17, 33, 34, 48, 54, 285, 333, 334, 365, 385, 430, 471, 516, 816, 1049, 3333, 3334, 33333, 33334, 333333, 333334, 483048, 3333333, 3333334, 33333333, 33333334, 333333333, 333333334, 3333333333, 3333333334, 33333333333, 33333333334
OFFSET
1,2
LINKS
FORMULA
For k > 0, A002277(k) is a term.
For k >= 0, A002277(k) + 1 (= A093137(k)) is a term.
MATHEMATICA
Select[Range@ 50000, Length@ Union@ IntegerDigits[3 #^2 + 2 # - 1] <= 2 &] (* Giovanni Resta, Sep 04 2019 *)
PROG
(PARI) for(k=1, 1e8, if(#Set(digits(3*k^2+2*k-1))<=2, print1(k", ")))
(Magma) [k:k in [1..10000000]| #Set(Intseq((k+1)*(3*k-1))) le 2]; // Marius A. Burtea, Aug 29 2019
CROSSREFS
Cf. A002277, A016069, A093137, A213517 (in case of triangular numbers), A270710, A322571.
Sequence in context: A023788 A032989 A367147 * A108320 A177958 A032941
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 29 2019
EXTENSIONS
a(35)-a(36) from Jinyuan Wang, Aug 30 2019
a(37)-a(40) from Giovanni Resta, Sep 04 2019
STATUS
approved