OFFSET
1,2
COMMENTS
The complement is {35, 37, 39, 45, 61, 65, ...}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. This sequence lists all MM-numbers of regular multiset multisystems, where regularity means all vertex-degrees are equal.
EXAMPLE
Most small numbers belong to this sequence. However, the sequence of multiset multisystems whose MM-numbers do not belong to this sequence begins:
35: {{2},{1,1}}
37: {{1,1,2}}
39: {{1},{1,2}}
45: {{1},{1},{2}}
61: {{1,2,2}}
65: {{2},{1,2}}
69: {{1},{2,2}}
70: {{},{2},{1,1}}
71: {{1,1,3}}
74: {{},{1,1,2}}
75: {{1},{2},{2}}
77: {{1,1},{3}}
78: {{},{1},{1,2}}
87: {{1},{1,3}}
89: {{1,1,1,2}}
90: {{},{1},{1},{2}}
91: {{1,1},{1,2}}
95: {{2},{1,1,1}}
99: {{1},{1},{3}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], SameQ@@Last/@FactorInteger[Times@@primeMS[#]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 15 2018
STATUS
approved