The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322550 Table read by ascending antidiagonals: T(n, k) is the minimum number of cubes necessary to fill a right square prism with base area n^2 and height k. 2
 1, 4, 2, 9, 1, 3, 16, 18, 12, 4, 25, 4, 1, 2, 5, 36, 50, 48, 36, 20, 6, 49, 9, 75, 1, 45, 3, 7, 64, 98, 4, 100, 80, 2, 28, 8, 81, 16, 147, 18, 1, 12, 63, 4, 9, 100, 162, 192, 196, 180, 150, 112, 72, 36, 10, 121, 25, 9, 4, 245, 1, 175, 2, 3, 5, 11, 144, 242, 300, 324, 320, 294, 252, 200, 144, 90, 44, 12 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Stefano Spezia, First 150 antidiagonals of the table, flattened FORMULA T(n, k) = n^2*k/gcd(n, k)^3. T(n, k) = A000290(n)*A000027(k)/A000578(A050873(n,k)). First column: T(n, 1) = A000290(n). First row of the table: T(1, n) = A000027(n). Main diagonal of the table: T(n, n) = A000012(n). Superdiagonal of the table: T(n, n + 1) = A011379(n). Subdiagonal of the table: T(n, n - 1) = A045991(n). X(n, k) = T(n + 1 - k, k). Diagonal of the triangle: X(n, n) = A000027(n). X(2*n - 1, n) = A000012(n). EXAMPLE The table T starts in row n = 1 with columns k >= 1 as: 1 2 3 4 5 6 7 8 9 ... 4 1 12 2 20 3 28 4 36 ... 9 18 1 36 45 2 63 72 3 ... 16 4 48 1 80 12 112 2 144 ... 25 50 75 100 1 150 175 200 225 ... 36 9 4 18 180 1 252 36 12 ... 49 98 147 196 245 294 1 392 441 ... 64 16 192 4 320 48 448 1 576 ... 81 162 9 324 405 18 567 648 1 ... ... The triangle X(n, k) begins n\k| 1 2 3 4 5 6 7 8 9 ---+---------------------------------------------------- 1 | 1 2 | 4 2 3 | 9 1 3 4 | 16 18 12 4 5 | 25 4 1 2 5 6 | 36 50 48 36 20 6 7 | 49 9 75 1 45 3 7 8 | 64 98 4 100 80 2 28 8 9 | 81 16 147 18 1 12 63 4 9 ... MAPLE a := (n, k) -> (n+1-k)^2*k/gcd(n+1-k, k)^3: seq(seq(a(n, k), k = 1 .. n), n = 1 .. 12) MATHEMATICA T[n_, k_]:=n^2*k/GCD[n, k]^3; Flatten[Table[T[n-k+1, k], {n, 12}, {k, n}]] PROG (GAP) Flat(List([1..12], n->List([1..n], k->(n+1-k)^2*k/GcdInt(n+1-k, k)^3))); (Magma) [[(n+1-k)^2*k/Gcd(n+1-k, k)^3: k in [1..n]]: n in [1..12]]; // triangle output (Maxima) sjoin(v, j) := apply(sconcat, rest(join(makelist(j, length(v)), v)))\$ display_triangle(n) := for i from 1 thru n do disp(sjoin(makelist((i+1-j)^2*j/gcd(i+1-j, j)^3, j, 1, i), " ")); display_triangle(12); (PARI) T(n, k) = (n+1-k)^2*k/gcd(n+1-k, k)^3; tabl(nn) = for(i=1, nn, for(j=1, i, print1(T(i, j), ", ")); print); tabl(12) \\ triangle output CROSSREFS Cf. A000290, A000027, A000578, A050873. Cf. A011379 (superdiagonal of the table), A045991 (subdiagonal of the table). Cf. A320043 (row sums of the triangle). Sequence in context: A010649 A067721 A159899 * A201531 A021237 A115881 Adjacent sequences: A322547 A322548 A322549 * A322551 A322552 A322553 KEYWORD nonn,tabl AUTHOR Stefano Spezia, Dec 15 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 08:20 EST 2022. Contains 358458 sequences. (Running on oeis4.)