Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #30 Sep 08 2022 08:46:23
%S 1,4,64,1240,27640,667744,17013976,450174736,12250723480,340711148320,
%T 9641274232384,276704848753216,8035189363318936,235655550312118720,
%U 6970100090159566480,207674717284507191520,6227433643414033714840,187795334412416019255520
%N Inverse binomial transform of the Apéry numbers (A005259).
%C Starting with the a(2) term, each term is divisible by 8. (Empirical observation.)
%H Jackson Earles, Justin Ford, Poramate Nakkirt, Marlo Terr, Dr. Ilia Mishev, Sarah Arpin, <a href="https://www.colorado.edu/math/binomial-transforms-sequences-fall-2018">Binomial Transforms of Sequences</a>, Fall 2018.
%F a(n) = Sum_{i=0..n} C(n,i) * (-1)^i * A005259(n-i).
%F a(n) ~ 2^((5*n + 3)/2) * (1 + sqrt(2))^(2*n - 1) / (Pi*n)^(3/2). - _Vaclav Kotesovec_, Dec 17 2018
%e a(2) = binomial(2,0)*A(0) - binomial(2,1)*A(1) + binomial(2,2)*A(2), where A(k) denotes the k-th Apéry number. Using this definition:
%e a(2) = binomial(2,0)*(binomial(0,0)*binomial(0,0))^2 - binomial(2,1)*((binomial(1,0)*binomial(1,0))^2 + (binomial(1,1)*binomial(2,1))^2) + binomial(2,2)*((binomial(2,0)*binomial(2,0))^2 + (binomial(2,1)*binomial(3,1))^2 + (binomial(2,2)*binomial(4,2))^2) = 64.
%p a:=n->add(binomial(n,i)*(-1)^i*add((binomial(n-i,k)*binomial(n-i+k,k))^2,k=0..n-i),i=0..n): seq(a(n),n=0..20); # _Muniru A Asiru_, Dec 22 2018
%t a[n_] := Sum[(-1)^(n-k) * Binomial[n, k] * Sum[(Binomial[k, j] * Binomial[k+j, j])^2, {j, 0, k}], {k, 0, n}]; Array[a, 20, 0] (* _Amiram Eldar_, Dec 13 2018 *)
%o (Sage)
%o def OEISInverse(N, seq):
%o BT = [seq[0]]
%o k = 1
%o while k< N:
%o next = 0
%o j = 0
%o while j <=k:
%o next = next + (((-1)^(j+k))*(binomial(k,j))*seq[j])
%o j = j+1
%o BT.append(next)
%o k = k+1
%o return BT
%o Apery = oeis('A005259')
%o OEISInverse(18,Apery)
%o (Sage) [sum((-1)^(n-k)*binomial(n,k)*sum((binomial(k,j)* binomial(k+j,j))^2 for j in (0..k)) for k in (0..n)) for n in (0..20)] # _G. C. Greubel_, Dec 13 2018
%o (PARI) {a(n) = sum(k=0,n, (-1)^(n-k)*binomial(n,k)*sum(j=0,k, (binomial(k,j)*binomial(k+j,j))^2))};
%o for(n=0, 20, print1(a(n), ", ")) \\ _G. C. Greubel_, Dec 13 2018
%o (Magma) [(&+[(-1)^(n-k)*Binomial(n,k)*(&+[(Binomial(k,j)*Binomial(k+j,j))^2: j in [0..k]]): k in [0..n]]): n in [0..20]]; // _G. C. Greubel_, Dec 13 2018
%Y Cf. A005259, A322518.
%K nonn
%O 0,2
%A _Sarah Arpin_, Dec 13 2018