login
Triangle read by rows of the 2-adic valuation (A007814) of Stirling numbers of first kind (A008275).
0

%I #8 Dec 13 2018 04:59:24

%S 0,0,0,1,0,0,1,0,1,0,3,1,0,1,0,3,1,0,0,0,0,4,2,3,0,0,0,0,4,2,2,0,3,1,

%T 2,0,7,4,2,2,0,3,1,2,0,7,4,2,5,0,0,1,1,0,0,8,5,3,2,1,0,0,1,3,0,0,8,5,

%U 3,2,1,0,1,0,1,0,1,0,10,7,7,3,2,1,0,1,0,1,0,1,0

%N Triangle read by rows of the 2-adic valuation (A007814) of Stirling numbers of first kind (A008275).

%H Min Qiu, Shaofang Hong, <a href="https://arxiv.org/abs/1812.04539">The 2-adic valuations of Stirling numbers of the first kind</a>, arXiv:1812.04539 [math.NT], 2018.

%F T(n,k) = A007814(A008275(n,k)).

%e Triangle begins:

%e 0,

%e 0, 0,

%e 1, 0, 0,

%e 1, 0, 1, 0,

%e 3, 1, 0, 1, 0,

%e 3, 1, 0, 0, 0, 0,

%e 4, 2, 3, 0, 0, 0, 0,

%e 4, 2, 2, 0, 3, 1, 2, 0,

%e ...

%t T[n_, k_] := IntegerExponent[StirlingS1[n, k], 2]; Table[T[n, k], {n, 1, 20}, {k, 1, n}] // Flatten (* _Amiram Eldar_, Dec 13 2018 *)

%o (PARI) T(n,k) = valuation(stirling(n, k, 1), 2);

%o row(n) = vector(n, k, T(n,k));

%o tabl(nn) = vector(nn, k, row(k));(PARI) T(n,k) = valuation(stirling(n, k, 1), 2);

%Y Cf. A007814, A008275.

%K nonn,tabl

%O 1,11

%A _Michel Marcus_, Dec 13 2018