This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322490 Numbers k such that k^k ends with 7. 2
 3, 17, 23, 37, 43, 57, 63, 77, 83, 97, 103, 117, 123, 137, 143, 157, 163, 177, 183, 197, 203, 217, 223, 237, 243, 257, 263, 277, 283, 297, 303, 317, 323, 337, 343, 357, 363, 377, 383, 397, 403, 417, 423, 437, 443, 457, 463, 477, 483, 497, 503, 517, 523, 537, 543, 557, 563 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Equivalently, numbers k such that k and (7^h)^k end with the same digit, where h == 1 (mod 4). Also, numbers k such that k and (3^h)^k end with the same digit, where h == 3 (mod 4). LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,1,-1). FORMULA O.g.f.: x*(3 + 14*x + 3*x^2)/((1 + x)*(1 - x)^2). E.g.f.: 3 + 2*exp(-x) + 5*(2*x - 1)*exp(x). a(n) = -a(-n+1) = a(n-1) + a(n-2) - a(n-3). a(n) = 10*n + 2*(-1)^n - 5. Therefore: a(n) = 10*n - 7 for odd n; a(n) = 10*n - 3 for even n. a(n+2*k) = a(n) + 20*k. MAPLE select(n->n^n mod 10=7, [\$1..563]); # Paolo P. Lava, Dec 18 2018 MATHEMATICA Table[10 n + 2 (-1)^n - 5, {n, 1, 60}] LinearRecurrence[{1, 1, -1}, {3, 17, 23}, 80] (* Harvey P. Dale, Sep 15 2019 *) PROG (Sage) [10*n+2*(-1)^n-5 for n in (1..70)] (Maxima) makelist(10*n+2*(-1)^n-5, n, 1, 70); (GAP) List([1..70], n -> 10*n+2*(-1)^n-5); (MAGMA) [10*n+2*(-1)^n-5: n in [1..70]]; (Python) [10*n+2*(-1)**n-5 for n in xrange(1, 70)] (Julia) [10*n+2*(-1)^n-5 for n in 1:70] |> println (PARI) apply(A322490(n)=10*n+2*(-1)^n-5, [1..70]) (PARI) Vec(x*(3 + 14*x + 3*x^2) / ((1 + x)*(1 - x)^2) + O(x^55)) \\ Colin Barker, Dec 13 2018 CROSSREFS Cf. A004526, A056849. Subsequence of A063226, A295009. Similar sequences are listed in A322489. Sequence in context: A082372 A273407 A267067 * A206626 A128107 A154620 Adjacent sequences:  A322487 A322488 A322489 * A322491 A322492 A322493 KEYWORD nonn,base,easy AUTHOR Bruno Berselli, Dec 12 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 19:12 EDT 2019. Contains 328308 sequences. (Running on oeis4.)