OFFSET
1,1
COMMENTS
A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed. Thus 2003 is in this sequence but not in A081027.
Complement of all nonprimes and A305352.
LINKS
Robert Price, Table of n, a(n) for n = 1..530
MATHEMATICA
b = 10; d = {};
p = Select[Range[2, 10000], PrimeQ[#] &];
For[i = 1, i <= Length[p], i++,
c = IntegerDigits[p[[i]], b];
If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]];
For[j = 1, j <= Length[c], j++,
t = Delete[c, j];
If[t[[1]] == 0, Continue[]];
If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]]; Complement[Table[Prime[n], {n, PrimePi[Last[d]]}], d] (* Robert Price, Dec 09 2018 *)
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Robert Price, Dec 09 2018
STATUS
approved