login
A322432
Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1-x^j)^14 is zero.
6
4, 9, 15, 19, 24, 26, 29, 32, 34, 37, 44, 48, 49, 54, 55, 59, 66, 69, 74, 78, 79, 81, 83, 84, 92, 94, 99, 100, 101, 103, 104, 109, 113, 114, 117, 119, 124, 125, 129, 134, 136, 142, 144, 147, 149, 151, 154, 158, 159, 160, 169, 170, 171, 174, 179, 180, 184, 185, 193, 194
OFFSET
1,1
COMMENTS
Indices of zero entries in A010821.
LINKS
PROG
(PARI) my(x='x+O('x^300)); Vec(select(x->(x==0), Vec(eta(x)^14 - 1), 1)) \\ Michel Marcus, Dec 08 2018
CROSSREFS
Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1 - x^j)^m is zero: A090864 (m=1), A213250 (m=2), A014132 (m=3), A302056 (m=4), A302057 (m=5), A020757 (m=6), A322430 (m=8), A322431 (m=10), this sequence (m=14), A322043 (m=15), A322433 (m=26).
Sequence in context: A313208 A313209 A313210 * A313211 A313212 A313213
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 07 2018
STATUS
approved