login
A322430
Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1-x^j)^8 is zero.
7
3, 7, 11, 13, 15, 18, 19, 23, 27, 28, 29, 31, 35, 38, 39, 43, 45, 47, 48, 51, 53, 55, 59, 61, 62, 63, 67, 68, 71, 73, 75, 77, 78, 79, 83, 84, 87, 88, 91, 93, 95, 98, 99, 103, 106, 107, 109, 111, 113, 115, 117, 118, 119, 123, 125, 127, 128, 130, 131, 135, 138, 139, 141
OFFSET
1,1
COMMENTS
Indices of zero entries in A000731.
Complement of A267137. - Kemoneilwe Thabo Moseki, Dec 12 2019
LINKS
PROG
(PARI) my(x='x+O('x^160)); Vec(select(x->(x==0), Vec(eta(x)^8 - 1), 1)) \\ Michel Marcus, Dec 08 2018
CROSSREFS
Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1 - x^j)^m is zero: A090864 (m=1), A213250 (m=2), A014132 (m=3), A302056 (m=4), A302057 (m=5), A020757 (m=6), this sequence (m=8), A322431 (m=10), A322432 (m=14), A322043 (m=15), A322433 (m=26).
Sequence in context: A031466 A045062 A111068 * A337705 A102213 A276283
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 07 2018
STATUS
approved