login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322414 Compound tribonacci sequence with a(n) = A278041(A278041(n)), for n >= 0. 7
23, 67, 104, 148, 172, 216, 253, 297, 341, 378, 422, 446, 490, 527, 571, 608, 652, 676, 720, 757, 801, 845, 882, 926, 950, 994, 1031, 1075, 1099, 1143, 1180, 1224, 1268, 1305, 1349, 1373, 1417, 1454, 1498, 1535, 1579, 1603, 1647, 1684, 1728, 1772, 1809, 1853, 1877, 1921, 1958, 2002, 2046, 2083, 2127, 2151, 2195, 2232, 2276, 2313, 2357 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

(a(n+1)) = A319972(n)-1 = A003146(A003146(n))-1, the corresponding classical compound tribonacci sequence. - Michel Dekking, Apr 04 2019

Sequences A322408-A322414 are based on defining the tribonacci ternary word to start with index 0 (in contrast to the usual definition, in A080843 and A092782, which starts with index 1). As a result these nine sequences differ from the compound tribonacci sequences defined in  A278040, A278041, and A319966-A319972. - N. J. A. Sloane, Apr 05 2019

LINKS

Table of n, a(n) for n=0..60.

FORMULA

a(n) = C(C(n)) = C(C(n) + 1) - 4 = 7*A(n) + 6*B(n)  + 4*(n + 4), for n >= 0, where A = A278040, B = A278039 and C = A278041. For a proof see the W. Lang link in A278040, Proposition 9, eq. (56).

CROSSREFS

Cf. A278039, A278040, A278041, A322413.

Cf. A003144, A003145, A003146.

Sequence in context: A052087 A030458 A053559 * A031376 A069173 A124716

Adjacent sequences:  A322411 A322412 A322413 * A322415 A322416 A322417

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Jan 02 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 19:49 EDT 2019. Contains 322446 sequences. (Running on oeis4.)