

A322414


Compound tribonacci sequence with a(n) = A278041(A278041(n)), for n >= 0.


7



23, 67, 104, 148, 172, 216, 253, 297, 341, 378, 422, 446, 490, 527, 571, 608, 652, 676, 720, 757, 801, 845, 882, 926, 950, 994, 1031, 1075, 1099, 1143, 1180, 1224, 1268, 1305, 1349, 1373, 1417, 1454, 1498, 1535, 1579, 1603, 1647, 1684, 1728, 1772, 1809, 1853, 1877, 1921, 1958, 2002, 2046, 2083, 2127, 2151, 2195, 2232, 2276, 2313, 2357
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

(a(n+1)) = A319972(n)1 = A003146(A003146(n))1, the corresponding classical compound tribonacci sequence.  Michel Dekking, Apr 04 2019
The nine sequences A308199, A319967, A319968, A322410, A322409, A322411, A322413, A322412, A322414 are based on defining the tribonacci ternary word to start with index 0 (in contrast to the usual definition, in A080843 and A092782, which starts with index 1). As a result these nine sequences differ from the compound tribonacci sequences defined in A278040, A278041, and A319966A319972.  N. J. A. Sloane, Apr 05 2019


LINKS

Table of n, a(n) for n=0..60.


FORMULA

a(n) = C(C(n)) = C(C(n) + 1)  4 = 7*A(n) + 6*B(n) + 4*(n + 4), for n >= 0, where A = A278040, B = A278039 and C = A278041. For a proof see the W. Lang link in A278040, Proposition 9, eq. (56).


CROSSREFS

Cf. A278039, A278040, A278041, A322413.
Cf. A003144, A003145, A003146.
Sequence in context: A052087 A030458 A053559 * A031376 A069173 A124716
Adjacent sequences: A322411 A322412 A322413 * A322415 A322416 A322417


KEYWORD

nonn,easy


AUTHOR

Wolfdieter Lang, Jan 02 2019


STATUS

approved



