login
A322410
Compound tribonacci sequence with a(n) = A278040(A278039(n)), for n >= 0.
7
1, 8, 14, 21, 25, 32, 38, 45, 52, 58, 65, 69, 76, 82, 89, 95, 102, 106, 113, 119, 126, 133, 139, 146, 150, 157, 163, 170, 174, 181, 187, 194, 201, 207, 214, 218, 225, 231, 238, 244, 251, 255, 262, 268, 275, 282, 288, 295, 299, 306, 312, 319, 326, 332, 339, 343, 350, 356, 363, 369, 376
OFFSET
0,2
COMMENTS
The nine sequences A308199, A319967, A319968, A322410, A322409, A322411, A322413, A322412, A322414 are based on defining the tribonacci ternary word to start with index 0 (in contrast to the usual definition, in A080843 and A092782, which starts with index 1). As a result these nine sequences differ from the compound tribonacci sequences defined in A278040, A278041, and A319966-A319972. - N. J. A. Sloane, Apr 05 2019
FORMULA
A(B(n)) = A(B(n) + 1) - 4 = A(n) + B(n) + n, for n >= 0, with A = A278040 and B = A278039. For a proof see the W. Lang link in A278040, Proposition 9, eq. (49).
a(n+1) = A319967(n)-1 = A003145(A003144(n))-1, the corresponding classical compound tribonacci sequence. - Michel Dekking, Apr 04 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jan 02 2019
STATUS
approved