login
A322366
Number of integers k in {0,1,...,n} such that k identical test tubes can be balanced in a centrifuge with n equally spaced holes.
4
1, 0, 2, 2, 3, 2, 5, 2, 5, 4, 7, 2, 11, 2, 9, 8, 9, 2, 17, 2, 17, 10, 13, 2, 23, 6, 15, 10, 23, 2, 29, 2, 17, 14, 19, 12, 35, 2, 21, 16, 37, 2, 41, 2, 35, 38, 25, 2, 47, 8, 47, 20, 41, 2, 53, 16, 51, 22, 31, 2, 59, 2, 33, 52, 33, 18, 65, 2, 53, 26, 67, 2, 71, 2, 39, 68, 59, 18, 77, 2, 77, 28, 43, 2, 83, 22, 45, 32, 79
OFFSET
0,3
COMMENTS
Numbers where a(n) + A000010(n) != n + 1: A102467. - Robert G. Wilson v, Aug 23 2021
LINKS
Matt Baker, The Balanced Centrifuge Problem, Math Blog, 2018.
Holly Krieger and Brady Haran, The Centrifuge Problem, Numberphile video (2018)
T. Y. Lam and K. H. Leung, On vanishing sums for roots of unity, arXiv:math/9511209 [math.NT], 1995.
Gary Sivek, On vanishing sums of distinct roots of unity, #A31, Integers 10 (2010), 365-368.
FORMULA
a(n) = |{ k : k and n-k can be written as a sum of prime factors of n }|.
a(n) = 2 <=> n is prime (A000040).
a(n) >= n-1 <=> n in {1,2,3,4} union { A008588 }.
a(n) = (n+4)/2 <=> n in { A100484 } minus { 4 }.
a(n) = (n+9)/3 <=> n in { A001748 } minus { 9 }.
a(n) = (n+25)/5 <=> n in { A001750 } minus { 25 }.
a(n) = (n+49)/7 <=> n in { A272470 } minus { 49 }.
a(n^2) = n+1 <=> n = 0 or n is prime <=> n in { A182986 }.
a(A001248(n)) = A008864(n).
a(n) is odd <=> n in { A163300 }.
a(n) is even <=> n in { A004280 }.
EXAMPLE
a(6) = |{0,2,3,4,6}| = 5.
a(9) = |{0,3,6,9}| = 4.
a(10) = |{0,2,4,5,6,8,10}| = 7.
MAPLE
a:= proc(n) option remember; local f, b; f, b:=
map(i-> i[1], ifactors(n)[2]),
proc(m, i) option remember; m=0 or i>0 and
(b(m, i-1) or f[i]<=m and b(m-f[i], i))
end; forget(b); (t-> add(
`if`(b(j, t) and b(n-j, t), 1, 0), j=0..n))(nops(f))
end:
seq(a(n), n=0..100);
MATHEMATICA
$RecursionLimit = 4096;
a[1] = 0;
a[n_] := a[n] = Module[{f, b}, f = FactorInteger[n][[All, 1]];
b[m_, i_] := b[m, i] = m == 0 || i > 0 &&
(b[m, i - 1] || f[[i]] <= m && b[m - f[[i]], i]);
With[{t = Length[f]}, Sum[
If[b[j, t] && b[n - j, t], 1, 0], {j, 0, n}]]];
Table[a[n], {n, 0, 1000}] (* Jean-François Alcover, Dec 13 2018, after Alois P. Heinz, corrected and updated Aug 07 2021 *)
f[n_] := Block[{c = 2, k = 2, p = First@# & /@ FactorInteger@ n}, While[k < n, If[ IntegerPartitions[k, All, p, 1] != {} && IntegerPartitions[n - k, All, p, 1] != {}, c++]; k++]; c]; f[0] = 1; f[1] = 0; Array[f, 75] (* Robert G. Wilson v, Aug 22 2021 *)
KEYWORD
nonn,look
AUTHOR
Alois P. Heinz, Dec 04 2018
STATUS
approved