This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322361 a(n) = gcd(n, A003961(n)), where A003961 is completely multiplicative with a(prime(k)) = prime(k+1). 2
 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 5, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 15, 1, 1, 1, 1, 7, 9, 1, 1, 1, 1, 1, 3, 1, 1, 5, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 15, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 1, 9, 1, 1, 5, 1, 11, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 15, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 35 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 LINKS Antti Karttunen, Table of n, a(n) for n = 1..20000 FORMULA a(n) = gcd(n, A003961(n)). a(n) = A003961(gcd(n, A064989(n))). MATHEMATICA a[n_] := If[n == 1, 1, GCD[n, Times@@(NextPrime[First[#]]^Last[#] &/@FactorInteger[n])]]; Array[a, 100] (* Amiram Eldar, Dec 05 2018~ *) PROG (PARI) A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961 A322361(n) = gcd(n, A003961(n)); CROSSREFS Cf. A003961, A064989, A318668, A322362. Sequence in context: A226915 A180173 A318668 * A219208 A061680 A097558 Adjacent sequences:  A322358 A322359 A322360 * A322362 A322363 A322364 KEYWORD nonn AUTHOR Antti Karttunen, Dec 05 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 06:19 EDT 2019. Contains 322294 sequences. (Running on oeis4.)