login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322343 Number of equivalence classes of convex lattice polygons of genus n. 8
16, 45, 120, 211, 403, 714, 1023, 1830, 2700, 3659, 6125, 8101, 11027, 17280, 21499, 28689, 43012, 52736, 68557, 97733, 117776, 152344, 209409, 248983, 319957, 420714, 497676, 641229, 813814, 957001 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..30.

Wouter Castryck, Moving Out the Edges of a Lattice Polygon, Discrete Comput. Geom., 47 (2012), p. 496-518, Column N in Table 1, p 512.

Hugo Pfoertner, Illustration of polygons of genus 1 representing the 16 equivalence classes, (2018).

Poonen, B., Rodriguez-Villegas, F., Lattice polygons and the number 12, Am. Math. Mon. 107 (2000), no. 3, 238-250 (2000).

EXAMPLE

a(1) = 16 because there are 16 equivalence classes of lattice polygons having exactly 1 interior lattice point. See Pfoertner link.

CROSSREFS

Cf. A063984, A070911, A322344, A322345, A322346, A322347, A322348, A322349, A322350.

Sequence in context: A300962 A051868 A209993 * A318093 A223029 A244343

Adjacent sequences:  A322340 A322341 A322342 * A322344 A322345 A322346

KEYWORD

nonn,more

AUTHOR

Hugo Pfoertner, Dec 04 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 00:08 EST 2019. Contains 329209 sequences. (Running on oeis4.)