login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322324 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Product_{p|n, p prime} (1 - p^k). 0
1, 1, 0, 1, -1, 0, 1, -3, -2, 0, 1, -7, -8, -1, 0, 1, -15, -26, -3, -4, 0, 1, -31, -80, -7, -24, 2, 0, 1, -63, -242, -15, -124, 24, -6, 0, 1, -127, -728, -31, -624, 182, -48, -1, 0, 1, -255, -2186, -63, -3124, 1200, -342, -3, -2, 0, 1, -511, -6560, -127, -15624, 7502, -2400, -7, -8, 4, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,8

LINKS

Table of n, a(n) for n=1..66.

FORMULA

G.f. of column k: Sum_{j>=1} mu(j)*j^k*x^j/(1 - x^j).

Dirichlet g.f. of column k: zeta(s)/zeta(s-k).

A(n,k) = Sum_{d|n} mu(d)*d^k.

EXAMPLE

Square array begins:

  1,  1,   1,    1,     1,     1, ...

  0, -1,  -3,   -7,   -15,   -31, ...

  0, -2,  -8,  -26,   -80,  -242, ...

  0, -1,  -3,   -7,   -15,   -31, ...

  0, -4, -24, -124,  -624, -3124, ...

  0,  2,  24,  182,  1200,  7502, ...

MATHEMATICA

Table[Function[k, Product[1 - Boole[PrimeQ[d]] d^k, {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten

Table[Function[k, SeriesCoefficient[Sum[MoebiusMu[j] j^k x^j/(1 - x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten

Table[Function[k, Sum[MoebiusMu[d] d^k, {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten

PROG

(PARI) T(n, k) = sumdiv(n, d, moebius(d)*d^k);

matrix(6, 6, n, k, T(n, k-1)) \\ Michel Marcus, Dec 03 2018

CROSSREFS

Columns k=0..5 give A063524, A023900, A046970, A063453, A189922, A189923.

Cf. A008683, A059379, A059380, A321222 (diagonal).

Sequence in context: A054654 A253669 A154477 * A142071 A291680 A193283

Adjacent sequences:  A322321 A322322 A322323 * A322325 A322326 A322327

KEYWORD

sign,tabl

AUTHOR

Ilya Gutkovskiy, Dec 03 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 25 08:15 EDT 2019. Contains 321469 sequences. (Running on oeis4.)