login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322235 Triangle, read by rows, each row n being defined by g.f. Product_{k=1..n} (k + x + k*x^2), for n >= 0. 7
1, 1, 1, 1, 2, 3, 5, 3, 2, 6, 11, 24, 23, 24, 11, 6, 24, 50, 131, 160, 215, 160, 131, 50, 24, 120, 274, 825, 1181, 1890, 1815, 1890, 1181, 825, 274, 120, 720, 1764, 5944, 9555, 17471, 19866, 24495, 19866, 17471, 9555, 5944, 1764, 720, 5040, 13068, 48412, 85177, 173460, 223418, 313628, 302619, 313628, 223418, 173460, 85177, 48412, 13068, 5040, 40320, 109584, 440684, 834372, 1860153, 2642220, 4120122, 4521924, 5320667, 4521924, 4120122, 2642220, 1860153, 834372, 440684, 109584, 40320, 362880, 1026576, 4438620, 8936288, 21541905, 33149481, 56464695, 68597418, 89489025, 86715299, 89489025, 68597418, 56464695, 33149481, 21541905, 8936288, 4438620, 1026576, 362880 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..5040, as a flattened triangle of rows 0..70.

FORMULA

Row sums equal (2*n+1)!/(n!*2^n), the odd double factorials.

Left and right borders equal n!.

EXAMPLE

This irregular triangle formed from coefficients of x^k in Product_{m=1..n} (m + x + m*x^2), for n >= 0, k = 0..2*n, begins

1;

1, 1, 1;

2, 3, 5, 3, 2;

6, 11, 24, 23, 24, 11, 6;

24, 50, 131, 160, 215, 160, 131, 50, 24;

120, 274, 825, 1181, 1890, 1815, 1890, 1181, 825, 274, 120;

720, 1764, 5944, 9555, 17471, 19866, 24495, 19866, 17471, 9555, 5944, 1764, 720;

5040, 13068, 48412, 85177, 173460, 223418, 313628, 302619, 313628, 223418, 173460, 85177, 48412, 13068, 5040;

40320, 109584, 440684, 834372, 1860153, 2642220, 4120122, 4521924, 5320667, 4521924, 4120122, 2642220, 1860153, 834372, 440684, 109584, 40320; ...

in which the central terms equal A322238.

RELATED SEQUENCES.

Note that the terms in the secondary diagonal A322237 in the above triangle

[1, 3, 24, 160, 1890, 19866, 313628, 4521924, 89489025, 1642616195, ...]

may be divided by triangular numbers to obtain A322236:

[1, 1, 4, 16, 126, 946, 11201, 125609, 1988645, 29865749, 592326527, ...].

MATHEMATICA

row[n_] := CoefficientList[Product[k+x+k*x^2, {k, 1, n}] + O[x]^(2n+1), x];

Table[row[n], {n, 0, 9}] // Flatten (* Jean-Fran├žois Alcover, Dec 26 2018 *)

PROG

(PARI) {T(n, k) = polcoeff( prod(m=1, n, m + x + m*x^2) +x*O(x^k), k)}

/* Print the irregular triangle */

for(n=0, 10, for(k=0, 2*n, print1( T(n, k), ", ")); print(""))

CROSSREFS

Cf. A322236, A322237, A322238.

Cf. A322225 (variant), A322891 (variant).

Sequence in context: A197032 A321781 A254862 * A172984 A072751 A251542

Adjacent sequences:  A322232 A322233 A322234 * A322236 A322237 A322238

KEYWORD

nonn,tabf

AUTHOR

Paul D. Hanna, Dec 15 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 6 11:51 EDT 2020. Contains 333273 sequences. (Running on oeis4.)