login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = [x^(n-1)] Product_{k=1..n} (k + x - k*x^2), for n >= 1.
4

%I #10 Jan 05 2019 02:26:24

%S 1,3,-12,-140,540,15456,-50932,-3176172,7343325,1053842295,

%T -1009469538,-515714090814,-374961500823,349796118587475,

%U 949197425607720,-314320029983283752,-1565276549925545181,361569820089891813849,2715239099277372861920,-518323783521922446434520,-5333587428291215212424382,906157476001402934272328354,12062331313935951302447900940,-1897919702589547490476079347500,-31441371048822199544956413616625

%N a(n) = [x^(n-1)] Product_{k=1..n} (k + x - k*x^2), for n >= 1.

%C a(n) = n*(n+1)/2 * A322226(n) for n >= 1.

%H Paul D. Hanna, <a href="/A322227/b322227.txt">Table of n, a(n) for n = 1..301</a>

%e The irregular triangle A322225 formed from coefficients of x^k in Product_{m=1..n} (m + x - m*x^2), for n >= 0, k = 0..2*n, begins

%e 1;

%e 1, 1, -1;

%e 2, 3, -3, -3, 2;

%e 6, 11, -12, -21, 12, 11, -6;

%e 24, 50, -61, -140, 75, 140, -61, -50, 24;

%e 120, 274, -375, -1011, 540, 1475, -540, -1011, 375, 274, -120;

%e 720, 1764, -2696, -8085, 4479, 15456, -5005, -15456, 4479, 8085, -2696, -1764, 720;

%e 5040, 13068, -22148, -71639, 42140, 169266, -50932, -221389, 50932, 169266, -42140, -71639, 22148, 13068, -5040; ...

%e in which this sequence forms a diagonal.

%e RELATED SEQUENCES.

%e Note that the terms in this sequence

%e [1, 3, -12, -140, 540, 15456, -50932, -3176172, 7343325, 1053842295, ...]

%e may be divided by triangular numbers n*(n+1)/2 to obtain A322226:

%e [1, 1, -2, -14, 36, 736, -1819, -88227, 163185, 19160769, -15294993, ...].

%t a[n_] := SeriesCoefficient[Product[k + x - k x^2, {k, 1, n}], {x, 0, n-1}];

%t Array[a, 25] (* _Jean-François Alcover_, Dec 29 2018 *)

%o (PARI) {T(n, k) = polcoeff( prod(m=1, n, m + x - m*x^2) +x*O(x^k), k)}

%o /* Print the irregular triangle */

%o for(n=0, 10, for(k=0, 2*n, print1( T(n, k), ", ")); print(""))

%o /* Print this sequence */

%o for(n=1, 30, print1( T(n, n-1), ", "))

%Y Cf. A322225, A322226.

%K sign

%O 1,2

%A _Paul D. Hanna_, Dec 15 2018