login
A322216
G.f.: Product_{n>=1} (1 - 2*x^n)^3.
2
1, -6, 6, 22, -30, -30, -26, 102, 138, -94, 6, -450, -214, 258, 462, 846, 234, 618, -1490, -2274, -2382, 554, -402, 2070, 8178, 3018, 7638, -3226, -4878, -15246, -14954, -10506, -13158, -6510, 22710, 46830, 29754, 64434, 12702, 25278, -29862, -63654, -130562, -107922, -144990, -131526, -15810, 58278, 284162, 180378, 460422, 309686, 388866, 234018, 159046, -568986, -636246, -736254, -1241082, -1307106, -971222
OFFSET
0,2
COMMENTS
Antidiagonal sums of square table A322215.
LINKS
EXAMPLE
G.f.: A(x) = 1 - 6*x + 6*x^2 + 22*x^3 - 30*x^4 - 30*x^5 - 26*x^6 + 102*x^7 + 138*x^8 - 94*x^9 + 6*x^10 - 450*x^11 - 214*x^12 + 258*x^13 + 462*x^14 + 846*x^15 + 234*x^16 + 618*x^17 - 1490*x^18 - 2274*x^19 - 2382*x^20 + ...
such that
A(x) = (1-2*x)^3 * (1-2*x^2)^3 * (1-2*x^3)^3 * (1-2*x^4)^3 * (1-2*x^5)^3 * ...
PROG
(PARI) {a(n) = polcoeff( prod(m=1, n, 1 - 2*x^m +x*O(x^n) )^3, n)}
for(n=0, 60, print1(a(n), ", "))
CROSSREFS
Sequence in context: A255460 A255464 A325998 * A053168 A141388 A255473
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 10 2018
STATUS
approved