The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322204 G.f.: exp( Sum_{n>=1} A322203(n)*x^n/n ), where A322203(n) is the coefficient of x^n*y^n/n in Sum_{n>=1} -log(1 - (x^n + y^n)). 11
 1, 1, 3, 7, 20, 54, 168, 518, 1702, 5672, 19413, 67329, 236994, 842362, 3022320, 10924142, 39749219, 145457241, 534996370, 1976582432, 7332199623, 27298096431, 101968071485, 382033462335, 1435270419582, 5405847465772, 20408264704999, 77211968620103, 292706146651697, 1111698968597495, 4229571286335997, 16117966287887641, 61515492682026560, 235114188287816030, 899821838980825557, 3448133313264656915 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1669 (first 401 terms from Paul D. Hanna) FORMULA a(n) ~ c * 4^n / n^(3/2), where c = 1/sqrt(Pi) * Product_{j>=1} (2^(j+1) * (2^j - sqrt(4^j - 1))) = 0.6176761088360252844346512553859... - Vaclav Kotesovec, Jun 18 2019, updated Aug 12 2019 G.f.: Product_{j>=1} c(x^j), where c(x) = (1-sqrt(1-4*x))/(2*x) is the g.f. of A000108. - Alois P. Heinz, Aug 24 2019 EXAMPLE G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 20*x^4 + 54*x^5 + 168*x^6 + 518*x^7 + 1702*x^8 + 5672*x^9 + 19413*x^10 + 67329*x^11 + 236994*x^12 + ... such that log( A(x) ) = x + 5*x^2/2 + 13*x^3/3 + 45*x^4/4 + 131*x^5/5 + 497*x^6/6 + 1723*x^7/7 + 6525*x^8/8 + 24349*x^9/9 + 92655*x^10/10 + ... + A322203(n)*x^n/n + ... Also, A(x)^2  = 1 + 2*x + 7*x^2 + 20*x^3 + 63*x^4 + 190*x^5 + 613*x^6 + 1976*x^7 + 6604*x^8 + 22368*x^9 + 77270*x^10 + 270208*x^11 + 956780*x^12 + ... + A322202(n)*x^n + ... MAPLE C:= proc(n) option remember; binomial(2*n, n)/(n+1) end: b:= proc(n, i) option remember; `if`(n=0 or i=1, C(n),       add((t-> b(t, min(t, i-1)))(n-i*j)*C(j), j=0..n/i))     end: a:= n-> b(n\$2): seq(a(n), n=0..35);  # Alois P. Heinz, Aug 24 2019 MATHEMATICA nmax = 25; CoefficientList[Series[Product[Sum[CatalanNumber[k]*x^(j*k), {k, 0, nmax/j}], {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 12 2019 *) nmax = 25; CoefficientList[Series[Product[(1 - Sqrt[1 - 4*x^k])/(2*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 12 2019 *) PROG (PARI) {L = sum(n=1, 61, -log(1 - (x^n + y^n) +O(x^61) +O(y^61)) ); } {A322203(n) = polcoeff( n*polcoeff( L, n, x), n, y)} {a(n) = polcoeff( exp( sum(m=1, n, A322203(m)*x^m/m ) +x*O(x^n) ), n) } for(n=0, 35, print1( a(n), ", ") ) CROSSREFS Cf. A000108, A322200, A322203, A322202, A309682. Sequence in context: A293739 A293740 A293110 * A000227 A327993 A245891 Adjacent sequences:  A322201 A322202 A322203 * A322205 A322206 A322207 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 30 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 01:22 EST 2020. Contains 338631 sequences. (Running on oeis4.)