login
A322186
G.f.: exp( Sum_{n>=1} A322185(n)*x^n/n ), where A322185(n) = sigma(2*n) * binomial(2*n,n)/2.
2
1, 3, 15, 76, 357, 1662, 8203, 36609, 169800, 788024, 3586350, 15948147, 73761986, 324147729, 1454796651, 6544916640, 28902107643, 126842754933, 567156315794, 2468434955040, 10893525305088, 47854663427104, 208582052412240, 905923236202737, 3975385018556868, 17200981327476354, 74619131550054048, 323976744392754994, 1400917964875907424, 6031485491299656747
OFFSET
0,2
COMMENTS
Related series:
(1) Product_{n>=1} (1 - x^(2*n))/(1 - x^n)^3 = exp( Sum_{n>=1} sigma(2*n) * x^n/n ) (see formula of Joerg Arndt in A182818).
(2) C(x) = exp( Sum_{n>=1} binomial(2*n,n)/2 * x^n/n ), where C(x) = 1 + x*C(x)^2 is the Catalan function (A000108).
A322185(n) is also the coefficient of x^n*y^n/n in log( Product_{n>=1} 1/(1 - (x + y)^n) ).
LINKS
EXAMPLE
G.f.: A(x) = 1 + 3*x + 15*x^2 + 76*x^3 + 357*x^4 + 1662*x^5 + 8203*x^6 + 36609*x^7 + 169800*x^8 + 788024*x^9 + 3586350*x^10 + 15948147*x^11 + ...
such that
log(A(x)) = 3*x + 21*x^2/2 + 120*x^3/3 + 525*x^4/4 + 2268*x^5/5 + 12936*x^6/6 + 41184*x^7/7 + 199485*x^8/8 + 948090*x^9/9 + 3879876*x^10/10 + 12697776*x^11/11 + ... + A322185(n)*x^n/n + ...
RELATED SERIES.
A(x)^2 = 1 + 6*x + 39*x^2 + 242*x^3 + 1395*x^4 + 7746*x^5 + 42864*x^6 + 226560*x^7 + 1185417*x^8 + 6126642*x^9 + 31178598*x^10 + 156270312*x^11 + 780797727*x^12 + ...
where A(x)^2 = exp( Sum_{n>=1} sigma(2*n) * binomial(2*n,n) * x^n/n ).
PROG
(PARI) {A322185(n) = sigma(2*n) * binomial(2*n, n)/2}
{a(n) = polcoeff( exp( sum(m=1, n, A322185(m)*x^m/m ) +x*O(x^n) ), n) }
for(n=0, 30, print1( a(n), ", ") )
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 07 2018
STATUS
approved