login
A322183
A320890 in decimal representation.
1
3, 6, 13, 55, 3557, 466333640, 137637397139039684081205979563
OFFSET
1,1
COMMENTS
If the terms of A320890 are considered as binary representations, then this sequence expresses these terms in decimal representation.
LINKS
MATHEMATICA
FromDigits[#, 2] &/@ Nest[Append[#, Flatten[IntegerDigits[#, 2] & /@ Table[Count[#, Last@ #] &@ #[[1 ;; k]], {k, Length@ #}]] &[#[[-1]] ] ] &, {{1, 1}}, 6] (* Amiram Eldar, Dec 02 2018 after Michael De Vlieger at A320890 *)
PROG
(Python)
A322183_list = [3]
while len(A322183_list)<10:
a0, a1, s = 0, 0, ''
for d in bin(A322183_list[-1])[2:]:
if d == '0':
a0 += 1
s += bin(a0)[2:]
else:
a1 += 1
s += bin(a1)[2:]
A322183_list.append(int(s, 2))
(PARI) decimal(v, base) = my(w=[]); for(k=0, #v-1, w=concat(w, v[#v-k]*base^k)); sum(i=1, #w, w[i])
replace(v) = my(w=[], zeros=0, ones=0); for(k=1, #v, if(v[k]==0, zeros++; w=concat(w, binary(zeros))); if(v[k]==1, ones++; w=concat(w, binary(ones)))); w
terms(n) = my(v=[1, 1], i=0); while(i < n, print1(decimal(v, 2), ", "); i++; v=replace(v))
/* Print initial 7 terms as follows: */
terms(7) \\ Felix Fröhlich, Dec 01 2018
CROSSREFS
Cf. A320890.
Sequence in context: A055738 A301656 A359669 * A295292 A053365 A101034
KEYWORD
nonn,base
AUTHOR
Chai Wah Wu, Nov 30 2018
STATUS
approved