OFFSET
1,1
COMMENTS
If the terms of A320890 are considered as binary representations, then this sequence expresses these terms in decimal representation.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..9
MATHEMATICA
FromDigits[#, 2] &/@ Nest[Append[#, Flatten[IntegerDigits[#, 2] & /@ Table[Count[#, Last@ #] &@ #[[1 ;; k]], {k, Length@ #}]] &[#[[-1]] ] ] &, {{1, 1}}, 6] (* Amiram Eldar, Dec 02 2018 after Michael De Vlieger at A320890 *)
PROG
(Python)
A322183_list = [3]
while len(A322183_list)<10:
a0, a1, s = 0, 0, ''
for d in bin(A322183_list[-1])[2:]:
if d == '0':
a0 += 1
s += bin(a0)[2:]
else:
a1 += 1
s += bin(a1)[2:]
A322183_list.append(int(s, 2))
(PARI) decimal(v, base) = my(w=[]); for(k=0, #v-1, w=concat(w, v[#v-k]*base^k)); sum(i=1, #w, w[i])
replace(v) = my(w=[], zeros=0, ones=0); for(k=1, #v, if(v[k]==0, zeros++; w=concat(w, binary(zeros))); if(v[k]==1, ones++; w=concat(w, binary(ones)))); w
terms(n) = my(v=[1, 1], i=0); while(i < n, print1(decimal(v, 2), ", "); i++; v=replace(v))
/* Print initial 7 terms as follows: */
terms(7) \\ Felix Fröhlich, Dec 01 2018
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Chai Wah Wu, Nov 30 2018
STATUS
approved