login
A322152
Number of labeled connected multigraphs with loops with n edges (the vertices are {1,2,...,k} for some k).
5
1, 2, 7, 39, 314, 3359, 45000, 725269, 13670256, 295099184, 7179749707, 194399095705, 5797793490859, 188855813757729, 6671188010874785, 254007814638737649, 10370334196814589256, 451923738493729293016, 20937747226064522726151, 1027666505638118490940059
OFFSET
0,2
LINKS
MATHEMATICA
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[multsubs[multsubs[Range[n+1], 2], n], And[Union@@#==Range[Max@@Union@@#], Length[csm[#]]==1]&]], {n, 5}]
PROG
(PARI)
Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
seq(n)={Vec(vecsum(Connected(vector(2*n, j, 1/(1 - x + O(x*x^n))^binomial(j+1, 2)))))} \\ Andrew Howroyd, Nov 28 2018
CROSSREFS
Row sums of A322148. The unlabeled version is A007719.
Sequence in context: A125660 A112944 A060073 * A368927 A336185 A187806
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 28 2018
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, Nov 28 2018
STATUS
approved