login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Fermat pseudoprimes to base 2 that are hexagonal.
3

%I #12 Jul 24 2019 09:52:00

%S 561,2701,4371,8911,10585,18721,33153,49141,93961,104653,115921,

%T 157641,226801,289941,314821,334153,534061,665281,721801,831405,

%U 873181,915981,1004653,1373653,1537381,1755001,1815465,1987021,2035153,2233441,2284453,3059101,3363121

%N Fermat pseudoprimes to base 2 that are hexagonal.

%C Rotkiewicz proved that under Schinzel's Hypothesis H this sequence is infinite. His proof is the same as that of triangular pseudoprimes, since all the triangular numbers that he generates are also hexagonal (see comment in A320599).

%C Intersection of A001567 and A000384.

%C Subsequence of A293622.

%C The corresponding indices of the hexagonal numbers are 17, 37, 47, 67, 73, 97, 129, 157, 217, 229, 241, 281, 337, 381, 397, 409, 517, 577, 601, 645, 661, 677, 709, 829, 877, 937, 953, 997, ...

%H Amiram Eldar, <a href="/A322130/b322130.txt">Table of n, a(n) for n = 1..10000</a>

%H Andrzej Rotkiewicz, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa21/aa21137.pdf">On some problems of W. Sierpinski</a>, Acta Arithmetica, Vol. 21 (1972), pp. 251-259.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Schinzel%27s_hypothesis_H">Schinzel's Hypothesis H</a>.

%t hex[n_] := n(2n-1); Select[hex[Range[1, 1000]], PowerMod[2, (# - 1), #]==1 &]

%o (PARI) isok(n) = ispolygonal(n, 6) && (Mod(2, n)^n==2) && !isprime(n) && (n>1); \\ _Michel Marcus_, Nov 28 2018

%Y Cf. A000384, A001567, A293622, A293623, A293624, A320599.

%K nonn

%O 1,1

%A _Amiram Eldar_, Nov 27 2018