login
A322129
Digital roots of A057084.
0
1, 8, 2, 6, 5, 1, 4, 6, 7, 8, 8, 9, 8, 1, 7, 3, 4, 8, 5, 3, 2, 1, 1, 9, 1, 8, 2, 6, 5, 1, 4, 6, 7, 8, 8, 9, 8, 1, 7, 3, 4, 8, 5, 3, 2, 1, 1, 9, 1, 8, 2, 6, 5, 1, 4, 6, 7, 8, 8, 9, 8, 1, 7, 3, 4, 8, 5, 3, 2, 1, 1
OFFSET
1,2
COMMENTS
Periodic with period 24. The cycle is in reverse order to that of the digital roots of the Fibonacci numbers (A030132).
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
FORMULA
a(n) = A010888(A041025(n)) for n > 0.
a(n) = A010888(A057084(n)) for n > 0.
a(n) = A010888(A015454(n+3)) for n > 0.
a(n) = A010888(A114479(n+5)) for n > 0.
a(n) = A010888(A164546(n+3)) for n > 0.
a(n) = A030132(24 - (n mod 24)). - Filip Zaludek, Dec 09 2018
MATHEMATICA
digRoot[n_]:=FixedPoint[Total[IntegerDigits[#, 10]] &, n] ; digRoot/@LinearRecurrence[{8, -8}, {1, 8}, 100] (* Amiram Eldar, Nov 29 2018 *)
PROG
(GAP) A057084:=[1, 8];; for n in [3..80] do A057084[n]:=8*(A057084[n-1]-A057084[n-2]);; od; a:=List(A057084, i->1+(i-1) mod 9); # Muniru A Asiru, Nov 29 2018
CROSSREFS
Cf. A010888 (digital root), A057084, A030132 (order of cycle digits reversed), A000045, A015454, A041025, A114479, A164546.
Sequence in context: A021125 A329933 A234015 * A019635 A011468 A120219
KEYWORD
nonn,base,easy
AUTHOR
Ondrej Janicko, Nov 27 2018
STATUS
approved