This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322080 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{p|n, p prime} p^k. 1
 0, 0, 1, 0, 2, 1, 0, 4, 3, 1, 0, 8, 9, 2, 1, 0, 16, 27, 4, 5, 2, 0, 32, 81, 8, 25, 5, 1, 0, 64, 243, 16, 125, 13, 7, 1, 0, 128, 729, 32, 625, 35, 49, 2, 1, 0, 256, 2187, 64, 3125, 97, 343, 4, 3, 2, 0, 512, 6561, 128, 15625, 275, 2401, 8, 9, 7, 1, 0, 1024, 19683, 256, 78125, 793, 16807, 16, 27, 29, 11, 2 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 LINKS FORMULA G.f. of column k: Sum_{j>=1} prime(j)^k*x^prime(j)/(1 - x^prime(j)). EXAMPLE Square array begins:   0,  0,   0,    0,    0,     0,  ...   1,  2,   4,    8,   16,    32,  ...   1,  3,   9,   27,   81,   243,  ...   1,  2,   4,    8,   16,    32,  ...   1,  5,  25,  125,  625,  3125,  ...   2,  5,  13,   35,   97,   275,  ... MATHEMATICA Table[Function[k, Sum[Boole[PrimeQ[d]] d^k, {d, Divisors[n]}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten Table[Function[k, SeriesCoefficient[Sum[Prime[j]^k x^Prime[j]/(1 - x^Prime[j]), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten PROG (PARI) T(n, k)={vecsum([p^k | p<-factor(n)[, 1]])} for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018 CROSSREFS Columns k=0..4 give A001221, A008472, A005063, A005064, A005065. Cf. A109974, A200768 (diagonal), A285425, A286880, A321258. Sequence in context: A255528 A201701 A131667 * A086802 A092488 A068527 Adjacent sequences:  A322077 A322078 A322079 * A322081 A322082 A322083 KEYWORD nonn,tabl AUTHOR Ilya Gutkovskiy, Nov 26 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 19:44 EDT 2019. Contains 328128 sequences. (Running on oeis4.)