%I #15 Oct 16 2019 12:19:24
%S 0,0,1,2,4,5,10,11,15,18,25,26,36,37,46,54,62,63,78,79,93,103,116,117,
%T 137,142,157,166,184,185,216,217,233,247,266,278,308,309,330,346,374,
%U 375,416,417,443,467,492,493,533,540,575,595,625,626,671,687,723,745
%N a(n) = (1/2)*Sum_{p prime <= n} floor(n/p) * floor(1 + n/p).
%C Partial sums of A069359.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Prime_zeta_function">Prime Zeta Function</a>
%F a(n) ~ A085548 * n*(n+1)/2.
%F a(n) = Sum_{p prime <= n} A000217(floor(n/p)).
%F a(n) = (Sum_{k=1..floor(sqrt(n))} k*(k+1) * (pi(floor(n/k)) - pi(floor(n/(k+1)))) + Sum_{p prime <= floor(n/(1+floor(sqrt(n))))} floor(n/p)*floor(1+n/p))/2, where pi(x) is the prime-counting function (A000720).
%F a(n) = Sum_{i=1..n} i*pi(floor(n/i)), where pi(n) = A000720(n). - _Ridouane Oudra_, Oct 16 2019
%p with(numtheory): seq(add(i*pi(floor(n/i)), i=1..n), n=0..60); # _Ridouane Oudra_, Oct 16 2019
%t a[n_] := Module[{s=0, p=2}, While[p<=n, s += (Floor[n/p] * Floor[1 + n/p]); p=NextPrime[p]]; s]/2; Array[a, 100, 0] (* _Amiram Eldar_, Nov 25 2018 *)
%o (PARI) a(n) = my(s=0); forprime(p=2, n, s+=(n\p)*(1+n\p)); s/2;
%o (PARI) a(n) = sum(k=1, sqrtint(n), k*(k+1) * (primepi(n\k) - primepi(n\(k+1))))/2 + sum(k=1, n\(sqrtint(n)+1), if(isprime(k), (n\k)*(1+n\k), 0))/2;
%Y Cf. A000217, A000720, A013939, A013940, A069359.
%K nonn,easy
%O 0,4
%A _Daniel Suteu_, Nov 25 2018