login
A322062
Sums of pairs of consecutive terms of Pascal's triangle read by row.
0
2, 2, 2, 3, 3, 2, 4, 6, 4, 2, 5, 10, 10, 5, 2, 6, 15, 20, 15, 6, 2, 7, 21, 35, 35, 21, 7, 2, 8, 28, 56, 70, 56, 28, 8, 2, 9, 36, 84, 126, 126, 84, 36, 9, 2, 10, 45, 120, 210, 252, 210, 120, 45, 10, 2, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 2, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1
OFFSET
0,1
COMMENTS
Sums of pairs of adjacent terms of A007318. - N. J. A. Sloane, Jan 27 2019
FORMULA
T(n, k) = if (k<n, binomial(n, k) + binomial(n, k+1), binomial(n, k) + binomial(n+1, 0)). - Michel Marcus, Nov 25 2018
EXAMPLE
The 8th term is 6 because it is the sum of the 8th and 9th terms of Pascal's triangle read by row (3 + 3).
Triangle begins:
2;
2, 2;
3, 3, 2;
4, 6, 4, 2;
5, 10, 10, 5, 2;
...
MATHEMATICA
v = Flatten[Table[Binomial[n, k], {n, 0, 10}, {k, 0, n}]]; Most[v] + Rest[v] (* Amiram Eldar, Nov 25 2018 *)
PROG
(PARI) T(n, k) = if (k<n, binomial(n, k) + binomial(n, k+1), binomial(n, k) + binomial(n+1, 0));
tabl(nn) = for (n=0, nn, for(k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Nov 25 2018
CROSSREFS
Sequence in context: A194288 A360058 A194332 * A368460 A350679 A071451
KEYWORD
nonn,tabl,easy
AUTHOR
Kei Ryan, Nov 25 2018
STATUS
approved