This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322055 Number of ON cells after n generations of two-dimensional automaton based on knight moves (see Comments for definition; here a cell is turned ON if 1 or 2 neighbors are ON). 3
 1, 9, 41, 73, 145, 185, 321, 385, 577, 649, 881, 993, 1297, 1401, 1729, 1889, 2305, 2441, 2865, 3073, 3601, 3769, 4289, 4545, 5185, 5385, 6001, 6305, 7057, 7289, 8001, 8353, 9217, 9481, 10289, 10689, 11665, 11961, 12865, 13313, 14401, 14729, 15729, 16225 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The cells are the squares of the standard square grid. Cells are either OFF or ON, once they are ON they stay ON forever. Each cell has 8 neighbors, the cells that are a knight's move away. We begin in generation 0 with a single ON cell. A cell is turned ON at generation n+1 if it has either one or two ON neighbor at generation n. Since cells stay ON, an equivalent definition is that a cell is turned ON at generation n+1 if it has one or two neighbors that has been turned ON at some earlier generation. This sequence is a variant of A319018. This is another knight's-move version of the Ulam-Warburton cellular automaton (see A147562). The structure has dihedral D_8 symmetry (quarter-turn rotations plus reflections), so A322055 is a multiple of 8. LINKS Rémy Sigrist, Table of n, a(n) for n = 0..1000 Rémy Sigrist, Illustration of the structure at stage 255 N. J. A. Sloane, Illustration of a(0) to a(5). FORMULA Conjectures from Colin Barker, Dec 22 2018: (Start) G.f.: (1 + 8*x + 32*x^2 + 32*x^3 + 70*x^4 + 24*x^5 + 72*x^6 + 49*x^8 - 8*x^10 + 16*x^11 - 8*x^12) / ((1 - x)^3*(1 + x)^2*(1 + x^2)^2). a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) - a(n-8) + a(n-9) for n>8. (End) CROSSREFS Cf. A139250, A147562, A319018, A319019, A322056. Sequence in context: A034925 A159754 A045804 * A198943 A000451 A000437 Adjacent sequences:  A322052 A322053 A322054 * A322056 A322057 A322058 KEYWORD nonn AUTHOR N. J. A. Sloane, Dec 21 2018 EXTENSIONS More terms from Rémy Sigrist, Dec 22 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 20 07:42 EDT 2019. Contains 321345 sequences. (Running on oeis4.)