OFFSET
1,8
LINKS
Seiichi Manyama, Antidiagonals n = 1..53, flattened
Evgeniy Krasko, Igor Labutin, and Alexander Omelchenko, Enumeration of Labelled and Unlabelled Hamiltonian Cycles in Complete k-partite Graphs, arXiv:1709.03218 [math.CO], 2017.
Mathematics.StackExchange, Find the number of k 1's, k 2's, ... , k n's - total kn cards, Apr 08 2012.
FORMULA
T(n,k) = A322093(n,k) / k!. - Andrew Howroyd, Feb 03 2024
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 5, 36, 329, 3655, ...
0, 1, 29, 1721, 163386, 22831355, ...
0, 1, 182, 94376, 98371884, 182502973885, ...
0, 1, 1198, 5609649, 66218360625, 1681287695542855, ...
0, 1, 8142, 351574834, 47940557125969, 16985819072511102549, ...
PROG
(PARI)
q(n, x) = sum(i=1, n, (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!)
T(n, k) = subst(serlaplace(q(n, x)^k), x, 1)/k! \\ Andrew Howroyd, Feb 03 2024
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Nov 24 2018
STATUS
approved