
COMMENTS

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the blocksizes of p, and m is the augmented monomial symmetric function basis (see A321895).


MATHEMATICA

chromSF[g_]:=Sum[m[Sort[Length/@stn, Greater]], {stn, spsu[Select[Subsets[Union@@g], Select[DeleteCases[g, {_}], Function[ed, Complement[ed, #]=={}]]=={}&], Union@@g]}];
stableSets[u_, Q_]:=If[Length[u]===0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r===wQ[r, w]Q[w, r]], Q]]]];
hyps[n_]:=Select[stableSets[Rest[Subsets[Range[n]]], SubsetQ], Union@@#==Range[n]&];
Table[Length[Union[chromSF/@hyps[n]]], {n, 5}]
