login
9-dimensional Catalan numbers.
2

%I #24 Sep 08 2022 08:46:23

%S 1,1,4862,414315330,177295473274920,219738059326729823880,

%T 583692803893929928888544400,2760171874087743799855959353857200,

%U 20535535214275361308250745082811167425600,220381378415074546123953914908618547085974856000

%N 9-dimensional Catalan numbers.

%C Number of n X 9 Young tableaux.

%H Seiichi Manyama, <a href="/A321978/b321978.txt">Table of n, a(n) for n = 0..124</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Hook_length_formula">Hook length formula</a>

%F a(n) = 0!*1!*...*8! * (9*n)! / ( n!*(n+1)!*...*(n+8)! ).

%F a(n) ~ 16056320000 * 3^(18*n + 10) / (Pi^4 * n^40). - _Vaclav Kotesovec_, Nov 23 2018

%t Table[5056584744960000 (9 n)! / (n! (n + 1)! (n + 2)! (n + 3)! (n + 4)! (n + 5)! (n + 6)! (n + 7)! (n + 8)!), {n, 0, 15}] (* _Vincenzo Librandi_, Nov 24 2018 *)

%o (Magma) [5056584744960000*Factorial(9*n)/(Factorial(n)*Factorial(n + 1)*Factorial(n + 2)*Factorial(n + 3)*Factorial(n + 4)*Factorial(n + 5)*Factorial(n + 6)*Factorial(n + 7)*Factorial(n + 8)): n in [0..15]]; // _Vincenzo Librandi_, Nov 24 2018

%o (GAP) List([0..10],n->5056584744960000*Factorial(9*n)/Product([0..8],k->Factorial(n+k))); # _Muniru A Asiru_, Nov 25 2018

%Y Row 9 of A060854.

%Y Cf. A000108, A005789, A005790, A005791, A321975, A321976, A321977.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Nov 23 2018