login
A321917
Tetrangle where T(n,H(u),H(v)) is the coefficient of m(v) in p(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and p is power sum symmetric functions.
1
1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 0, 1, 3, 6, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 0, 1, 2, 2, 2, 0, 1, 6, 4, 12, 24, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 2, 2, 0, 0, 0, 1, 2, 1, 0, 2, 0, 0, 1, 3, 4, 6, 6, 6, 0, 1, 5, 10, 30
OFFSET
1,5
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
Tetrangle begins (zeroes not shown):
(1): 1
.
(2): 1
(11): 1 2
.
(3): 1
(21): 1 1
(111): 1 3 6
.
(4): 1
(22): 1 2
(31): 1 1
(211): 1 2 2 2
(1111): 1 6 4 12 24
.
(5): 1
(41): 1 1
(32): 1 1
(221): 1 1 2 2
(311): 1 2 1 2
(2111): 1 3 4 6 6 6
(11111): 1 5 10 30 20 60 20
For example, row 14 gives: p(32) = m(5) + m(32).
CROSSREFS
This is a regrouping of the triangle A321750.
Sequence in context: A280829 A303942 A321928 * A115201 A354100 A118229
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Nov 22 2018
STATUS
approved