login
A321908
If y is the integer partition with Heinz number n, then a(n) = |y|! / syt(y), where syt(y) is the number of standard Young tableaux of shape y.
2
1, 1, 2, 2, 6, 3, 24, 6, 12, 8, 120, 8, 720, 30, 24, 24, 5040, 24, 40320, 20, 80, 144, 362880, 30, 144, 840, 144, 72, 3628800, 45, 39916800, 120, 360, 5760, 360, 80, 479001600, 45360, 2016, 72, 6227020800, 144, 87178291200, 336, 240, 403200, 1307674368000, 144
OFFSET
1,3
COMMENTS
a(n) is the LCM of the denominators of the coefficients in the expansion of Schur functions in terms of power sum symmetric functions.
FORMULA
a(n) = A056239(n)! / A153452(n).
MATHEMATICA
syt[n_]:=If[n==1, 1, Sum[syt[n/q*If[q==2, 1, NextPrime[q, -1]]], {q, FactorInteger[n][[All, 1]]}]];
Table[Total[Cases[FactorInteger[n], {p_, k_}:>k*PrimePi[p]]]!/syt[n], {n, 30}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 21 2018
STATUS
approved