|
|
A321898
|
|
Sum of coefficients of power sums symmetric functions in h(y) * Product_i y_i! where h is homogeneous symmetric functions and y is the integer partition with Heinz number n.
|
|
1
|
|
|
1, 1, 2, 1, 6, 2, 24, 1, 4, 6, 120, 2, 720, 24, 12, 1, 5040, 4, 40320, 6, 48, 120, 362880, 2, 36, 720, 8, 24, 3628800, 12, 39916800, 1, 240, 5040, 144, 4, 479001600, 40320, 1440, 6, 6227020800, 48, 87178291200, 120, 24, 362880, 1307674368000, 2, 576, 36, 10080
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
|
|
LINKS
|
Table of n, a(n) for n=1..51.
Wikipedia, Symmetric polynomial
|
|
EXAMPLE
|
The sum of coefficients of 12h(32) = 2p(32) + 3p(221) + 2p(311) + 4p(2111) + p(11111) is a(15) = 12.
|
|
CROSSREFS
|
Row sums of A321897.
Cf. A005651, A008480, A056239, A124794, A124795, A135278, A296150, A319193, A321742-A321765.
Sequence in context: A185330 A217955 A325703 * A284434 A306543 A243484
Adjacent sequences: A321895 A321896 A321897 * A321899 A321900 A321901
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Gus Wiseman, Nov 20 2018
|
|
STATUS
|
approved
|
|
|
|