%I
%S 1,0,1,0,0,1,2,3,2,3,2,1,2,3,2,1,0,1,0,1,0,1,2,1,0,1,0,1,2,1,2,3,2,
%T 3,4,5,4,3,4,5,4,3,2,3,4,3,4,3,4,3,4,5,6,5,4,5,4,5,6,7,8,9,10,9,8,7,6,
%U 7,8,9,8,9,8,9,8,7,6,5,4,5,4,3,4,3,4,3,2
%N a(n) = A321860(prime(n)).
%C Among the first 10000 terms there are only 32 negative ones.
%C In general, assuming the strong form of RH, if 0 < a, b < k are integers, gcd(a, k) = gcd(b, k) = 1, a is a quadratic residue and b is a quadratic nonresidue mod n, then Pi(k,b)(n) > Pi(k,a)(n) occurs more often than not. Pi(a,b)(x) denotes the number of primes in the arithmetic progression a*k + b less than or equal to x. This phenomenon is called "Chebyshev's bias".
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev%27s_bias">Chebyshev's bias</a>
%F a(n) = Sum_{primes p<=n} Legendre(prime(i),11) = Sum_{primes p<=n} Kronecker(11,prime(i)) = Sum_{i=1..n} A011582(prime(i)).
%e prime(46) = 199. Among the primes <= 199, there are 20 ones congruent to 1, 3, 4, 5, 9 modulo 11 and 23 ones congruent to 2, 6, 7, 8, 10 modulo 11, so a(46) = 23  20 = 3.
%o (PARI) a(n) = sum(i=1, n, kronecker(11, prime(i)))
%Y Cf. A011582.
%Y Let d be a fundamental discriminant.
%Y Sequences of the form "a(n) = Sum_{primes p<=n} Kronecker(d,p)" with d <= 12: A321860 (d=11), A320857 (d=8), A321859 (d=7), A066520 (d=4), A321856 (d=3), A321857 (d=5), A071838 (d=8), A321858 (d=12).
%Y Sequences of the form "a(n) = Sum_{i=1..n} Kronecker(d,prime(i))" with d <= 12: this sequence (d=11), A320858 (d=8), A321864 (d=7), A038698 (d=4), A112632 (d=3), A321862 (d=5), A321861 (d=8), A321863 (d=12).
%K sign
%O 1,7
%A _Jianing Song_, Nov 20 2018
