login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321863 a(n) = A321858(prime(n)). 13
0, 0, 1, 2, 1, 0, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 3, 2, 3, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 4, 5, 6, 5, 6, 5, 6, 5, 4, 3, 2, 3, 4, 5, 6, 5, 4, 5, 4, 3, 2, 3, 2, 3, 4, 3, 4, 5, 6, 7, 6, 5, 6, 7, 6, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 3, 2, 1, 0, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Among the first 10000 terms there are only 291 negative ones, with the earliest one being a(6181) = -1.

In general, assuming the strong form of RH, if 0 < a, b < k are integers, gcd(a, k) = gcd(b, k) = 1, a is a quadratic residue and b is a quadratic nonresidue mod n, then Pi(k,b)(n) > Pi(k,a)(n) occurs more often than not. Pi(a,b)(x) denotes the number of primes in the arithmetic progression a*k + b less than or equal to x. This phenomenon is called "Chebyshev's bias". Here, although 11 is not a quadratic residue modulo 12, for most n we have Pi(12,7)(n) + Pi(12,11)(n) > Pi(12,1)(n) - Pi(12,5)(n), Pi(12,5)(n) + Pi(12,11)(n) > Pi(12,1)(n) + Pi(12,7)(n) and Pi(12,5)(n) + Pi(12,7)(n) > Pi(12,1)(n) + Pi(12,11)(n).

LINKS

Table of n, a(n) for n=1..87.

Wikipedia, Chebyshev's bias

FORMULA

a(n) = -Sum_{primes p<=n} Kronecker(12,prime(i)) = -Sum_{i=1..n} A110161(prime(i)).

EXAMPLE

prime(25) = 97, Pi(12,1)(97) = 5, Pi(12,5)(97) = Pi(12,7)(97) = Pi(12,11)(97) = 6, so a(25) = 6 + 6 - 5 - 6 = 1.

PROG

(PARI) a(n) = -sum(i=1, n, kronecker(12, prime(i)))

CROSSREFS

Cf. A110161.

Let d be a fundamental discriminant.

Sequences of the form "a(n) = -Sum_{primes p<=n} Kronecker(d,p)" with |d| <= 12: A321860 (d=-11), A320857 (d=-8), A321859 (d=-7), A066520 (d=-4), A321856 (d=-3), A321857 (d=5), A071838 (d=8), A321858 (d=12).

Sequences of the form "a(n) = -Sum_{i=1..n} Kronecker(d,prime(i))" with |d| <= 12: A321865 (d=-11), A320858 (d=-8), A321864 (d=-7), A038698 (d=-4), A112632 (d=-3), A321862 (d=5), A321861 (d=8), this sequence (d=12).

Sequence in context: A144095 A076092 A080468 * A294599 A080940 A080941

Adjacent sequences:  A321860 A321861 A321862 * A321864 A321865 A321866

KEYWORD

sign

AUTHOR

Jianing Song, Nov 20 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 20 13:18 EDT 2019. Contains 321345 sequences. (Running on oeis4.)