

A321863


a(n) = A321858(prime(n)).


13



0, 0, 1, 2, 1, 0, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 3, 2, 3, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 4, 5, 6, 5, 6, 5, 6, 5, 4, 3, 2, 3, 4, 5, 6, 5, 4, 5, 4, 3, 2, 3, 2, 3, 4, 3, 4, 5, 6, 7, 6, 5, 6, 7, 6, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 3, 2, 1, 0, 1, 0, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

Among the first 10000 terms there are only 291 negative ones, with the earliest one being a(6181) = 1.
In general, assuming the strong form of RH, if 0 < a, b < k are integers, gcd(a, k) = gcd(b, k) = 1, a is a quadratic residue and b is a quadratic nonresidue mod n, then Pi(k,b)(n) > Pi(k,a)(n) occurs more often than not. Pi(a,b)(x) denotes the number of primes in the arithmetic progression a*k + b less than or equal to x. This phenomenon is called "Chebyshev's bias". Here, although 11 is not a quadratic residue modulo 12, for most n we have Pi(12,7)(n) + Pi(12,11)(n) > Pi(12,1)(n)  Pi(12,5)(n), Pi(12,5)(n) + Pi(12,11)(n) > Pi(12,1)(n) + Pi(12,7)(n) and Pi(12,5)(n) + Pi(12,7)(n) > Pi(12,1)(n) + Pi(12,11)(n).


LINKS

Table of n, a(n) for n=1..87.
Wikipedia, Chebyshev's bias


FORMULA

a(n) = Sum_{primes p<=n} Kronecker(12,prime(i)) = Sum_{i=1..n} A110161(prime(i)).


EXAMPLE

prime(25) = 97, Pi(12,1)(97) = 5, Pi(12,5)(97) = Pi(12,7)(97) = Pi(12,11)(97) = 6, so a(25) = 6 + 6  5  6 = 1.


PROG

(PARI) a(n) = sum(i=1, n, kronecker(12, prime(i)))


CROSSREFS

Cf. A110161.
Let d be a fundamental discriminant.
Sequences of the form "a(n) = Sum_{primes p<=n} Kronecker(d,p)" with d <= 12: A321860 (d=11), A320857 (d=8), A321859 (d=7), A066520 (d=4), A321856 (d=3), A321857 (d=5), A071838 (d=8), A321858 (d=12).
Sequences of the form "a(n) = Sum_{i=1..n} Kronecker(d,prime(i))" with d <= 12: A321865 (d=11), A320858 (d=8), A321864 (d=7), A038698 (d=4), A112632 (d=3), A321862 (d=5), A321861 (d=8), this sequence (d=12).
Sequence in context: A144095 A076092 A080468 * A294599 A335511 A080940
Adjacent sequences: A321860 A321861 A321862 * A321864 A321865 A321866


KEYWORD

sign


AUTHOR

Jianing Song, Nov 20 2018


STATUS

approved



