OFFSET
1,17
COMMENTS
a(n) is the number of primes <= n that are quadratic nonresidues modulo 11 minus the number of primes <= n that are quadratic residues modulo 11.
It seems that there are more negative terms here than in some other sequences mentioned in crossrefs; nevertheless, among the first 10000 terms, only 138 ones are negative.
Please see the comment in A321856 describing "Chebyshev's bias" in the general case.
LINKS
Wikipedia, Chebyshev's bias
FORMULA
a(n) = -Sum_{primes p<=n} Legendre(p,11) = -Sum_{primes p<=n} Kronecker(-11,p) = -Sum_{primes p<=n} A011582(p).
EXAMPLE
Below 200, there are 20 primes congruent to 1, 3, 4, 5, 9 modulo 11 and 23 primes congruent to 2, 6, 7, 8, 10 modulo 11, so a(200) = 23 - 20 = 3.
PROG
(PARI) a(n) = -sum(i=1, n, isprime(i)*kronecker(-11, i))
CROSSREFS
Cf. A112632.
Let d be a fundamental discriminant.
Sequences of the form "a(n) = -Sum_{primes p<=n} Kronecker(d,p)" with |d| <= 12: this sequence (d=-11), A320857 (d=-8), A321859 (d=-7), A066520 (d=-4), A321856 (d=-3), A321857 (d=5), A071838 (d=8), A321858 (d=12).
KEYWORD
sign
AUTHOR
Jianing Song, Nov 20 2018
STATUS
approved