This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A321859 Number of primes congruent to 3, 5, 6 modulo 7 and <= n minus number of primes congruent to 1, 2, 4 modulo 7 and <= n. 13
 0, -1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,17 COMMENTS a(n) is the number of primes <= n that are quadratic nonresidues modulo 7 minus the number of primes <= n that are quadratic residues modulo 7. The first 10000 terms (except for a(2)) are nonnegative. a(p) = 0 for primes p = 3, 11, 211, 3371, 3389, ... The earliest negative term (besides a(2)) is a(48673) = -1. Conjecturally infinitely many terms should be negative. In general, assuming the strong form of RH, if 0 < a, b < k are integers, gcd(a, k) = gcd(b, k) = 1, a is a quadratic residue and b is a quadratic nonresidue mod n, then Pi(k,b)(n) > Pi(k,a)(n) occurs more often than not. Pi(a,b)(x) denotes the number of primes in the arithmetic progression a*k + b less than or equal to x. This phenomenon is called "Chebyshev's bias". LINKS Wikipedia, Chebyshev's bias FORMULA a(n) = -Sum_{primes p<=n} Legendre(p,7) = -Sum_{primes p<=n} Kronecker(-7,p) = -Sum_{primes p<=n} A175629(p). EXAMPLE Below 100, there are 10 primes congruent to 1, 2, 4 modulo 7 and 14 primes congruent to 3, 5, 6 modulo 7, so a(100) = 14 - 10 = 4. PROG (PARI) a(n) = -sum(i=1, n, isprime(i)*kronecker(-7, i)) CROSSREFS Cf. A175629. Let d be a fundamental discriminant. Sequences of the form "a(n) = -Sum_{primes p<=n} Kronecker(d,p)" with |d| <= 12: A321860 (d=-11), A320857 (d=-8), this sequence (d=-7), A066520 (d=-4), A321856 (d=-3), A321857 (d=5), A071838 (d=8), A321858 (d=12). Sequences of the form "a(n) = -Sum_{i=1..n} Kronecker(d,prime(i))" with |d| <= 12: A321865 (d=-11), A320858 (d=-8), A321864 (d=-7), A038698 (d=-4), A112632 (d=-3), A321862 (d=5), A321861 (d=8), A321863 (d=12). Sequence in context: A231717 A253315 A210480 * A321860 A266123 A115230 Adjacent sequences:  A321856 A321857 A321858 * A321860 A321861 A321862 KEYWORD sign AUTHOR Jianing Song, Nov 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 01:36 EDT 2019. Contains 327994 sequences. (Running on oeis4.)