login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321849 Expansion of e.g.f.: exp(x/(1-6*x)). 5
1, 1, 13, 253, 6553, 211801, 8201701, 369979093, 19047250993, 1101705494833, 70715424362941, 4987040544656941, 383243311962126793, 31871863566298601353, 2851588139929576342933, 273093945561709965890821, 27871997808801906673665121 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For k = 2,3,4,... the difference a(n+k) - a(n) is divisible by k.

LINKS

Ludovic Schwob, Table of n, a(n) for n = 0..199

FORMULA

a(n) = Sum_{k=0..n} 6^(n-k)*(n!/k!)*binomial(n-1, k-1).

Recurrence: a(n) = (12*n-11)*a(n-1) - 36*(n-2)*(n-1)*a(n-2).

a(n) ~ n! * exp(sqrt(2*n/3) - 1/12) * 6^(n - 1/4) / (2 * sqrt(Pi) * n^(3/4)). - Vaclav Kotesovec, Nov 21 2018

MAPLE

seq(coeff(series(factorial(n)*exp(x/(1-6*x)), x, n+1), x, n), n = 0 .. 17); # Muniru A Asiru, Nov 24 2018

MATHEMATICA

a[n_] := Sum[6^(n - k)*n!/k!*Binomial[n - 1, k - 1], {k, 0, n}]; Array[a, 20, 0] (* or *) a[0] = a[1] = 1; a[n_] := a[n] = (12n - 11)*a[n - 1] - 36(n - 2)(n - 1)*a[n - 2]; Array[a, 20, 0] (* Amiram Eldar, Nov 19 2018 *)

PROG

(PARI) my(x='x + O('x^20)); Vec(serlaplace(exp(x/(1-6*x)))) \\ Michel Marcus, Nov 25 2018

(MAGMA) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x/(1-6*x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Dec 08 2018

(Sage)

f= exp(x/(1-6*x))

g=f.taylor(x, 0, 13)

L=g.coefficients()

coeffs={c[1]:c[0]*factorial(c[1]) for c in L}

coeffs  # G. C. Greubel, Dec 08 2018

(MAGMA) [1] cat [&+[6^(n-k)* Factorial(n)/Factorial(k)*Binomial(n-1, k-1):  k in [0..n]]: n in [1.. 18]]; // Vincenzo Librandi, Dec 08 2018

CROSSREFS

Cf. A000262, A025168, A321837, A321847, A321848, A321850.

Sequence in context: A106738 A001508 A157946 * A034242 A142811 A034833

Adjacent sequences:  A321846 A321847 A321848 * A321850 A321851 A321852

KEYWORD

nonn

AUTHOR

Ludovic Schwob, Nov 19 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 18:37 EST 2020. Contains 332005 sequences. (Running on oeis4.)