%I #17 Jan 27 2019 09:37:27
%S 1,1,1,1,2,1,1,6,6,1,1,24,720,24,1,1,120,3628800,3628800,120,1,1,720,
%T 1307674368000,2432902008176640000,1307674368000,720,1,1,5040,
%U 51090942171709440000,10333147966386144929666651337523200000000,10333147966386144929666651337523200000000,51090942171709440000,5040,1
%N Factorials of terms of Pascal's triangle by row.
%e The 12th term is 24 because the 12th term of Pascal's triangle by row is 4 and 4! is 24 (4*3*2*1).
%p T:=(n,k)->factorial(binomial(n,k)): seq(seq(T(n,k),k=0..n),n=0..7); # _Muniru A Asiru_, Dec 20 2018
%t Flatten[Table[Binomial[n, k]!, {n, 0, 6}, {k, 0, n}]] (* _Amiram Eldar_, Nov 19 2018 *)
%o (GAP) Flat(List([0..7],n->List([0..n],k->Factorial(Binomial(n,k))))); # _Muniru A Asiru_, Dec 20 2018
%Y Cf. A007318, A000142.
%K nonn,tabl
%O 1,5
%A _Kei Ryan_, Nov 19 2018