%I #38 Nov 23 2018 03:52:39
%S 1,12,21,113,131,311,1114,1122,1141,1212,1221,1411,2112,2121,2211,
%T 4111,11115,11151,11511,15111,51111,111116,111123,111132,111161,
%U 111213,111231,111312,111321,111611,112113,112131,112311,113112,113121,113211,116111,121113
%N Numbers whose digit product equals the number of their digits.
%C Idea is similar to A061384, which uses addition instead of multiplication.
%H Giovanni Resta, <a href="/A321771/b321771.txt">Table of n, a(n) for n = 1..10000</a>
%e 12 has two digits, and their product is also 2, as 1*2=2.
%t Select[Range[1000000], Length[IntegerDigits[#]] == Times @@ IntegerDigits[#] &] (* _Amiram Eldar_, Nov 21 2018 *)
%o (PARI) isok(n) = my(d=digits(n)); vecprod(d) == #d; \\ _Michel Marcus_, Nov 22 2018
%Y Cf. A061384.
%Y Cf. A007954, A055642. Subsequence of A007602.
%Y Subsequence of A052382 (zeroless numbers).
%K nonn,base
%O 1,2
%A _Ivan Stoykov_, Nov 21 2018
%E More terms from _Amiram Eldar_, Nov 21 2018